Faculty Profile
- Plasma and Trap-based Techniques for Science with Antimatter, J. Fajans and C. M. Surko, Phys. Plasmas 27, 030601 (2020).
- Instability of an electron-plasma shear layer in an externally imposed strain, “Phys. Plasmas, N. C. Hurst, J. R. Danielson, D. H. E. Dubin and C. M. Surko, Phys. Plasmas 27, 042101 (2020).
- Confinement and manipulation of electron plasmas in a multicell trap, N. C. Hurst, J. R. Danielson, C. J. Baker, and C. M. Surko, Phys. Plasmas 26, 013513 (2019).
- Plasma and Trap-based Techniques for Science with Positrons, J. R. Danielson, D. H. E. Dubin, R.G. Greaves, and C. M. Surko, Rev. Mod. Phys. 87, 247 (2015).
- Positron-molecule Interactions: Resonant Attachment, Annihilation, and Bound States, G. F. Gribakin, J. A. Young, and C. M. Surko, Rev. Mod. Phys. 82, 2557- 2607 (2010).

Clifford Surko
Contact
Research Statement
We are developing techniques to accumulate, store and manipulate large numbers of positrons and to create specially tailored plasmas and positron beams - in essence, to make low-energy antimatter in the laboratory a reality. We are using these tools in a number of applications. We conducted the first studies of electron-positron plasmas and a number of high-resolution studies of the interaction of positrons with atoms and molecules. Current work focuses on understanding positron binding to neutral matter and molecular dynamics in the presence of attached positrons (lifetimes ≤ 10 ns) - important elements in developing a quantitative chemistry of matter and antimatter.
In the technology area, we are developing new types of specially tailored positron beams, including the use of cryogenically cooled, trapped positrons to improve energy resolution. We also built the prototype of a novel multicell trap to extend antimatter storage capabilities by orders of magnitude.
Finally, exploiting strongly magnetized electron plasmas as an analog, we are studying the two-dimensional dynamics of fluid vorticity under the influence of externally applied shear flows.