Data Streams

They’re Everywhere
Magnetic Stripe as Lab Example

Ubiquity of Data Streams

We’ve seen 12C
— and some intro to SPI and UART/RS-232

Remote Controls (IR)
— pulses of infrared light

Aircraft Transponders
— pulses of radio waves

Cell Phone Data
— sophisticated modulation schemes, but still digital data

Magnetic Stripe
— we’ll use as a fun example in lab

H-ITT Infrared Clickers

Old in-class clickers were IR: 0.5 ms pulse width; two similar packets back-to-back

Reverse-engineered transmission scheme: 1’s fat; 0’s skinny
end delimiter
Resulting bit-sequence for A signal (both packets) is:

1001000000001 101100100010101{11110111iv

1001/1111111100100110111010100001100 0]

\ A AN J
Y ' Y
button code transmitter ID (normal and inverted) checksum

ID is binary for 55573; that transmitter’s permanent ID
A, B, D, C, E, * just counted up in binary: 1001 = A; 1010 = B, etc.
checksum provides verification that data is correctly received

What’s with the Checksum?

A A A A

(\W4 N N \

1001000000001 101100100010101T111110111

N)\ AN J
Y N \

button code transmitter ID (normal first-packet version) checksum

Break data into chunks of 8 bits (bytes) and add up:

1001
00000000
11011001
00010101
11110111

Checksums provide a “sanity check” on the data integrity

Lecture 12: Data Streams UCSD Physics 122 4

H-ITT RS-232 Datastream to Computer

E-button on H-ITT (first of two packets):
01010000110000000001010011011101010100010111101101

+12V

-12V I L

* Serial datastream looks a lot different
— this one allows many zeros or ones in a row
— delimiters (called start bit and stop bit) bracket 8-bit data (1 byte)
— in this case, O’s are positive voltage, 1’s are negative (inverted; RS-232 std.)
— happens much faster than IR: in this case 19,200 bits/sec (baud)

e Packet breakdown:
— first packet: button number (5 — E), with LSB first: 101000
— next three packets are ID, also LSB first within each
— last packet is checksum type of verification

H-ITT bursts serial bursts

l \

1t data packet I 2"d data packet I

Lecture 12: Data Streams UCSD Physics 122 5

Stereo Remote Control

e Similar to H-ITT transmitters in principle:

— bursts of infrared light carrying digital information
— punctuated by delimiters so no long sequences of 1’s or 0’s

* Key differences:
— signal initiated by a WAKE UP! constant-on burst

— pattern that follows is repeated indefinitely until button is
released

* | can never get fewer than three packets...

— packet is variable in length depending on button

data packet data packet data packet

Sample patterns for data packet

POWER

VOL +

VOL -

remote ID?

L

data

00000000

10000000

01000000

10000

01000

11000100

00100100

10100100

01100100

11100100

A Different Code...

* The radio remote uses a different scheme:
— essentially nulls are 3x longer for 1 than for O

opart [| L JLLUNL LU IUULIIEIL data part

1111 1001 10100 100

— in data part, least significant bit (LSB) is first
— here 0x25

Lecture 12: Data Streams UCSD Physics 122

Aircraft Transponders at 1090 MHz

F1. C1 Al C A2 C4 A4 x Bl DI B2 D2 B4 D4 P2 ° Legacy Of WW” Frlend_
or-Foe

20.75 us .

Example: 5724 or 36,000 ft ¢ Bu rStS Of RF pOWer at

J M H H H w 1090 MHz

e At left: 12-bit pattern
— 4 octal digits; 3 delimeters

Even newer scheme at 978 MHz has more

data, and error check scheme can correct ® BG'OW' newer data-rich
several corrupted bytes in sequence ' .
— 56 or 112 bits

— can be lat/lon, etc.

— incl. parity check

8DABD...= 10001101 10101011 1101 ...
fixed preamble 1 o 0o 01101101 01T 01T 1T 1T 1 01

10 T M W A AR A

http://www.aircraft-avoid.com/ads-b-transition.html

Magstripe ldea

* On magnetic stripe, N-S junctions eat

their own magnetic flux lines, but N-N eros |
or S-S present external flux lines of 0 0 0 0 O
opposite direction
— pattern of N-N and S-S creates + and - e __1L_1L_1L_1L_1L _1L
transitions
— zero represented by long period mxed | LI L UL UL LD
— one represented by short period oo il !
— zeros look fat; ones thin (sign traditional __
irrelevant) 1 0 0 1 1 1
— two streams are produced from this: N 1 B
e adatastream I T T I I I

* aclock

— data valid when clock high

Lecture 12: Data Streams UCSD Physics 122

10

Magstripe Geometry

track 3
track 2
track 1

Up to three tracks of data

— Tracks 1 and 3 typically higher-density (7-bit) alpha-numeric data
— Track 2 typically lower-density (5-bit) numeric data

— Track 2 used on almost every card; track 1 often, track 3 seldom

Lecture 12: Data Streams UCSD Physics 122 11

Track 2 Character Code

b3

—--Data Bits--
bl b2
0 0
1 0
0 1
1 1
0 0
1 0
0 1
1 1
0 0
1 0
0 1
1 1
0 0
1 0
0 1
1 1

Pk PP P OOOCOCORFRPRRKFRFRPEFE P OOODO

Parity

b4 b5 Character

(OH)
(1H)
(2H)
(3H)
(4H)
(5H)
(6H)
(7H)
(8H)
(9H)
(AH)
(BH)
(CH)
(DH)
(EH)
(FH)

W 00 1o Ul WDN PP O

R PP FFFRFRFRRRPROOOOOOODO
/A Se e

H OO HOREFRPOOKRREROKOO R

v V I

Function

Data

Control

Start Sentinel
Control

Field Separator
Control

End Sentinel

Track 2 Code Breakdown

Five bits per character

Last bit is Parity: ensures odd number of ones
First four bits data: LSB first

— mapsto: 0123456789 : ;<=>7?

— numbers are direct binary mapping: 0110 2 6
Control characters and formatting

— start sentinel is 11010 =2 ;

— end sentinel is 11111 > ?

— important that first bit of start is 1 so knows how to start
slicing stream into chunks of 5

Track 1/3

Denser on stripe

7 bits per character
— odd parity (last bit, again)
— allows alpha-numeric set (6-bit data is 64 possibilities)
— 1"#$%&'()*+,-./0123456789: ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]1"

— “zeroth” character is a space, but can’t see it here

Start sentinel 1010001 =2 %
— note 5% character (101 index; LSB first)

End sentinel 1111100 - ?
— note 315t character (11111 index)

Parity and LRC

* The parity catches single-bit errors
— but could get fooled by greater damage to data

* Alongitudinal redundancy check (LRC) also employed
— one final character after end sentinel

— bit-wise running XOR combination of all prior chunks

* including start and end sentinels

— effectively 1 if odd number of 1’s in that bit position

* 0 doesn’t alter running result; 1 flips fromOtolor1to0

* Extremely unlikely to get no parity errors AND match
LRC

Python/Pi Implementation

e After initial exploration on scope...

— manual study of bit patterns and example decode
— better to understand what computer needs to do

* Will let Pi take over
— Approach 1: polling

» constantly “ask” about digital values and have smarts to interpret

— Approach 2: interrupts
* wait for an edge (on the clock, or card-loaded) then sample data
* closer to what we do: look for clock pulse, check data there

Interrupts on Pi GPIO
Facilitated in standard RPi.GPIO library

import RPi.GPIO GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(some pin, GPIO.IN, pull up down=GPIO.PUD UP)
GPIO.wait for edge(some pin, GPIO.FALLING, timeout=100)

Using some_pin as stand-in for variable for BCM #

Pull-up input so high even if not asserted externally
— card reader signals are active low: idle high

Wait for falling edge
Set timeout (here 100 ms) so it doesn’t hang forever

Pro-tip: first call towait for edge takes 30-40 msto
release

— so call clock edge wait before getting into read loop

— otherwise miss initial data unless swipe speed is slow

Program Flow

Set up GPIO and constants (chunk size, character
map)

Wait for card swipe to start
— allow some number of seconds
— abort if no action

Once card-loaded signal detected, begin collection
— on each clock edge, record data input channel value
When done, break into chunks and process

— evaluate parity, character, and track LRC

Report results in human-readable form

Example Capture Code

loaded = # starts not loaded (card not in)
seq = [] # list to hold sequence of ones and zeros
grace ms = XXXX # decide how many milliseconds to allow
"Swipe Card: you have %d seconds" % (grace ms/1000.0)

beg = time.time() # grab a time in sec.
GPIO.wait for edge(XX, GPIO.FALLING, timeout=grace ms) # card load edge
now = time.time() # grab post-load time
dt = now - beg # elapsed while waiting

(dt > grace ms/1000.0 - 0.1): # within 0.1 s of timeout

"Timed out. Cleaning up and exiting."
GPIO.cleanup()
sys.exit()

good form
exit program
did not time out
"Card Load detected”
loaded =
beg = time.time()
now = beg start out now at beg
((now - beg) < XX loaded): give it some time
GPIO.wait for edge(CLOCK VAR NAME,GPIO.FALLING,timeout=100) # caution delay
bit = 1 - GPIO. (DATA_ VAR NAME) get data value; active low
seq.append(bit) append to running list
GPIO.input (CARD LOADED VAR NAME) : replace name
loaded = if high; no longer loaded
now = time.time() capture current time

register as legit
reset begin time

HH K H H* FH K

H I W H W

Lecture 12: Data Streams UCSD Physics 122 19

Process/Interpret Code

msg = ' # will hold message content
par = "' # will hold parity indicators
pen = 0 # penalty count
lrc = 0 # long. redund. check
first = seq.index(1) # finds first one in seq
n char = ((seq) - first)/per # integer chunks after first
not end = # indicates have not seen end sentinel yet
ind (n_char): # walk through all chuncks of size per
parcel = seq[first+per*ind:first+per*(ind+1)] # slice out one chunk
n_ones = (parcel) # count up the ones in this chunk
n ones % 2 == # even number of ones (bad)
par += 'X' # indicate bad
not end: # still in valid sequence
pen += 1 # add to penalty
: # odd number of ones: parity good
par += '.' # indicate good
strn = "' # initialize empty string to build binary
val parcel: # run through each list element in chunk
strn += "%d" % val # append 1 or 0 as string
map ind = (strn[:per-1][::-1],2) # ignore parity, rev. order, binary to int
msg += charmap[map ind] # grab character corresponding to data value
not end: # still have not seen end sentinel
lrc "= map ind # accumulate LRC for valid data
(msg[-1] == "2’ ind > XX): # end sentinel for all tracks; after so many
not end = # reached end of legit section
"%$s LRC = %s" % (msg,charmap[lrc])

"o

$s; penalty = %d" % (par,pen)

Lecture 12: Data Streams UCSD Physics 122 20

A Diagnostic Trick

* If you need to sort out what’s happening in your
code, especially relative to the signal timing, insert a
pulse to hardware:

GPIO.output (MONITOR BCM,GPIO.HIGH)
time.sleep(0.0001)
GPIO.output (MONITOR BCM,GPIO.LOW)

* Creates 0.1 ms pulse on some GPIO pin

— can then see where this comes, and if it happens at all

Reading

* For magnetic stripe stuff, see:
— http://en.wikipedia.org/wiki/Magnetic stripe card

— http://money.howstuffworks.com/question503.htm

— http://stripesnoop.sourceforge.net/fag.html

— http://stripesnoop.sourceforge.net/devel/phrack37.txt

Lecture 12: Data Streams UCSD Physics 122

22

