
Data	Streams	

They’re	Everywhere	

Magne4c	Stripe	as	Lab	Example	

Lecture 12: Data Streams UCSD Physics 122 2

Ubiquity	of	Data	Streams	

•  We’ve	seen	I2C	
–  and	some	intro	to	SPI	and	UART/RS-232	

•  Remote	Controls	(IR)	
–  pulses	of	infrared	light	

•  AircraN	Transponders	
–  pulses	of	radio	waves	

•  Cell	Phone	Data	
–  sophis4cated	modula4on	schemes,	but	s4ll	digital	data	

•  Magne4c	Stripe	
–  we’ll	use	as	a	fun	example	in	lab	

Lecture 12: Data Streams UCSD Physics 122 3

H-ITT	Infrared	Clickers	

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	1	 0	 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	

Old	in-class	clickers	were	IR:	0.5	ms	pulse	width;	two	similar	packets	back-to-back	

Reverse-engineered	transmission	scheme:	1’s	fat;	0’s	skinny	

Resul4ng	bit-sequence	for	A	signal	(both	packets)	is:	

buYon	code	 transmiYer	ID	(normal	and	inverted)	 checksum	

end	delimiter	

ID	is	binary	for	55573;	that	transmiYer’s	permanent	ID	
A,	B,	D,	C,	E,	*	just	counted	up	in	binary:	1001	=	A;	1010	=	B,	etc.	
checksum	provides	verifica4on	that	data	is	correctly	received		

Lecture 12: Data Streams UCSD Physics 122 4

What’s	with	the	Checksum?	

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

buYon	code	 transmiYer	ID	(normal	first-packet	version)	 checksum	

Break	data	into	chunks	of	8	bits	(bytes)	and	add	up:	

1001	
00000000	
11011001	
00010101	
11110111	

Checksums	provide	a	“sanity	check”	on	the	data	integrity	

Lecture 12: Data Streams UCSD Physics 122 5

H-ITT	RS-232	Datastream	to	Computer	

1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	0	1	1	1	0	1	0	1	0	1	0	0	0	1	0	1	1	1	1	0	1	1	0	

•  Serial	datastream	looks	a	lot	different	
–  this	one	allows	many	zeros	or	ones	in	a	row	

–  delimiters	(called	start	bit	and	stop	bit)	bracket	8-bit	data	(1	byte)	

–  in	this	case,	0’s	are	posi4ve	voltage,	1’s	are	nega4ve	(inverted;	RS-232	std.)	

–  happens	much	faster	than	IR:	in	this	case	19,200	bits/sec	(baud)	

•  Packet	breakdown:	
–  first	packet:	buYon	number	(5	→	E),	with	LSB	first:	101000	

–  next	three	packets	are	ID,	also	LSB	first	within	each	

–  last	packet	is	checksum	type	of	verifica4on	

E-buYon	on	H-ITT	(first	of	two	packets):	

1st	data	packet	 2nd	data	packet	

H-ITT	bursts	 serial	bursts	

−12	V	

+12	V	

Lecture 12: Data Streams UCSD Physics 122 6

Stereo	Remote	Control	

•  Similar	to	H-ITT	transmiYers	in	principle:	
–  bursts	of	infrared	light	carrying	digital	informa4on	
–  punctuated	by	delimiters	so	no	long	sequences	of	1’s	or	0’s	

•  Key	differences:	
–  signal	ini4ated	by	a	WAKE	UP!	constant-on	burst	

–  paYern	that	follows	is	repeated	indefinitely	un4l	buYon	is	
released	

•  I	can	never	get	fewer	than	three	packets…	
–  packet	is	variable	in	length	depending	on	buYon	

data	packet	 data	packet	 data	packet	

Lecture 12: Data Streams UCSD Physics 122 7

Sample	paYerns	for	data	packet	
POWER	

VOL	+	

VOL	-	

1	

2	

3	

4	

5	

6	

7	

remote	ID?	 data	

10100100	

01100100	

11100100	

00000000	

10000000	

01000000	

10000	

01000	

11000100	

00100100	

Lecture 12: Data Streams UCSD Physics 122 8

A	Different	Code…	

•  The	radio	remote	uses	a	different	scheme:	
–  essen4ally	nulls	are	3×	longer	for	1	than	for	0	

–  in	data	part,	least	significant	bit	(LSB)	is	first	
–  here	0x25	

1				1				1				1				1		0	0			1				1			0		1		0	0				1		0	0	

data	part	ID	part	

AircraN	Transponders	at	1090	MHz	
•  Legacy	of	WWII	Friend-
or-Foe	

•  Bursts	of	RF	power	at	
1090	MHz	

•  At	leN:	12-bit	paYern	
–  4	octal	digits;	3	delimeters	

•  Below:	newer	data-rich	
–  56	or	112	bits	
–  can	be	lat/lon,	etc.	
–  incl.	parity	check	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 9	

hYp://www.aircraN-avoid.com/ads-b-transi4on.html	

Even	newer	scheme	at	978	MHz	has	more	
data,	and	error	check	scheme	can	correct	
several	corrupted	bytes	in	sequence	

Lecture 12: Data Streams UCSD Physics 122 10

Magstripe	Idea	

•  On	magne4c	stripe,	N-S	junc4ons	eat	
their	own	magne4c	flux	lines,	but	N-N	
or	S-S	present	external	flux	lines	of	
opposite	direc4on	
–  paYern	of	N-N	and	S-S	creates	+	and	−	

transi4ons	

–  zero	represented	by	long	period	
–  one	represented	by	short	period	
–  zeros	look	fat;	ones	thin	(sign	

irrelevant)	

–  two	streams	are	produced	from	this:	
•  a	data	stream	

•  a	clock	
–  data	valid	when	clock	high	

0	0	 0	 0	 0	 0	 0	 0	

1	 1	 1	 1	 1	 1	 1	 1	 1	

1	 1	 1	 1	 1	0	 0	 0	 0	

1	 1	 1	 1	 1	0	 0	 0	 0	

zeros	

ones	

mixed	

tradi4onal	

Lecture 12: Data Streams UCSD Physics 122 11

Magstripe	Geometry	

•  Up	to	three	tracks	of	data	
–  Tracks	1	and	3	typically	higher-density	(7-bit)	alpha-numeric	data	

–  Track	2	typically	lower-density	(5-bit)	numeric	data	

–  Track	2	used	on	almost	every	card;	track	1	oNen,	track	3	seldom	

track	3	

track	1	
track	2	

data	direc4on	

Lecture 12: Data Streams UCSD Physics 122 12

Track	2	Character	Code	
													--Data Bits-- Parity
 b1 b2 b3 b4 b5 Character Function

 0 0 0 0 1 0 (0H) Data
 1 0 0 0 0 1 (1H) "
 0 1 0 0 0 2 (2H) "
 1 1 0 0 1 3 (3H) "
 0 0 1 0 0 4 (4H) "
 1 0 1 0 1 5 (5H) "
 0 1 1 0 1 6 (6H) "
 1 1 1 0 0 7 (7H) "
 0 0 0 1 0 8 (8H) "
 1 0 0 1 1 9 (9H) "
 0 1 0 1 1 : (AH) Control
 1 1 0 1 0 ; (BH) Start Sentinel
 0 0 1 1 1 < (CH) Control
 1 0 1 1 0 = (DH) Field Separator
 0 1 1 1 0 > (EH) Control
 1 1 1 1 1 ? (FH) End Sentinel

Track	2	Code	Breakdown	

•  Five	bits	per	character	
•  Last	bit	is	Parity:	ensures	odd	number	of	ones	
•  First	four	bits	data:	LSB	first	

–  maps	to:	0123456789:;<=>?
–  numbers	are	direct	binary	mapping:	0110	!	6	

•  Control	characters	and	formatng	
–  start	sen4nel	is	11010	!	;	
–  end	sen4nel	is	11111	!	?	
–  important	that	first	bit	of	start	is	1	so	knows	how	to	start	
slicing	stream	into	chunks	of	5	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 13	

Track	1/3	
•  Denser	on	stripe	
•  7	bits	per	character	

–  odd	parity	(last	bit,	again)	
–  allows	alpha-numeric	set	(6-bit	data	is	64	possibili4es)	

–  	!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
–  “zeroth”	character	is	a	space,	but	can’t	see	it	here	

•  Start	sen4nel	1010001	!	%	
–  note	5th	character	(101	index;	LSB	first)	

•  End	sen4nel	1111100	!	?	
–  note	31st	character	(11111	index)	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 14	

Parity	and	LRC	

•  The	parity	catches	single-bit	errors	
–  but	could	get	fooled	by	greater	damage	to	data	

•  A	longitudinal	redundancy	check	(LRC)	also	employed	
–  one	final	character	aNer	end	sen4nel	
–  bit-wise	running	XOR	combina4on	of	all	prior	chunks	

•  including	start	and	end	sen4nels	
–  effec4vely	1	if	odd	number	of	1’s	in	that	bit	posi4on	

•  0	doesn’t	alter	running	result;	1	flips	from	0	to	1	or	1	to	0	

•  Extremely	unlikely	to	get	no	parity	errors	AND	match	
LRC	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 15	

Python/Pi	Implementa4on	

•  ANer	ini4al	explora4on	on	scope…	
–  manual	study	of	bit	paYerns	and	example	decode	
–  beYer	to	understand	what	computer	needs	to	do	

•  Will	let	Pi	take	over	
–  Approach	1:	polling	

•  constantly	“ask”	about	digital	values	and	have	smarts	to	interpret	

–  Approach	2:	interrupts	
•  wait	for	an	edge	(on	the	clock,	or	card-loaded)	then	sample	data	

•  closer	to	what	we	do:	look	for	clock	pulse,	check	data	there	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 16	

Interrupts	on	Pi	GPIO	
•  Facilitated	in	standard	RPi.GPIO	library	

•  Using	some_pin	as	stand-in	for	variable	for	BCM	#	
•  Pull-up	input	so	high	even	if	not	asserted	externally	

–  card	reader	signals	are	ac4ve	low:	idle	high	
•  Wait	for	falling	edge	
•  Set	4meout	(here	100	ms)	so	it	doesn’t	hang	forever	
•  Pro-4p:	first	call	to	wait_for_edge	takes	30–40	ms	to	

release	
–  so	call	clock	edge	wait	before	getng	into	read	loop	
–  otherwise	miss	ini4al	data	unless	swipe	speed	is	slow	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 17	

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setup(some_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.wait_for_edge(some_pin, GPIO.FALLING, timeout=100)

Program	Flow	

•  Set	up	GPIO	and	constants	(chunk	size,	character	
map)	

•  Wait	for	card	swipe	to	start	
–  allow	some	number	of	seconds	
–  abort	if	no	ac4on	

•  Once	card-loaded	signal	detected,	begin	collec4on	
–  on	each	clock	edge,	record	data	input	channel	value	

•  When	done,	break	into	chunks	and	process	
–  evaluate	parity,	character,	and	track	LRC	

•  Report	results	in	human-readable	form	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 18	

Example	Capture	Code	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 19	

loaded = False # starts not loaded (card not in)  
seq = [] # list to hold sequence of ones and zeros 
grace_ms = XXXX # decide how many milliseconds to allow 
print "Swipe Card: you have %d seconds" % (grace_ms/1000.0)  
beg = time.time() # grab a time in sec.  
GPIO.wait_for_edge(XX, GPIO.FALLING, timeout=grace_ms) # card load edge  
now = time.time() # grab post-load time  
dt = now - beg # elapsed while waiting  
if (dt > grace_ms/1000.0 - 0.1): # within 0.1 s of timeout  
 print "Timed out. Cleaning up and exiting."  
 GPIO.cleanup() # good form  
 sys.exit() # exit program  
else: # did not time out  
 print "Card Load detected"  
 loaded = True # register as legit  
beg = time.time() # reset begin time  
now = beg # start out now at beg  
while ((now - beg) < XX and loaded): # give it some time  
 GPIO.wait_for_edge(CLOCK_VAR_NAME,GPIO.FALLING,timeout=100) # caution delay  
 bit = 1 - GPIO.input(DATA_VAR_NAME) # get data value; active low  
 seq.append(bit) # append to running list  
 if GPIO.input(CARD_LOADED_VAR_NAME): # replace name  
 loaded = False # if high; no longer loaded  
 now = time.time() # capture current time  

Process/Interpret	Code	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 20	

msg = '' # will hold message content  
par = '' # will hold parity indicators  
pen = 0 # penalty count  
lrc = 0 # long. redund. check  
first = seq.index(1) # finds first one in seq  
n_char = (len(seq) - first)/per # integer chunks after first  
not_end = True # indicates have not seen end sentinel yet 
for ind in range(n_char): # walk through all chuncks of size per  
 parcel = seq[first+per*ind:first+per*(ind+1)] # slice out one chunk  
 n_ones = sum(parcel) # count up the ones in this chunk  
 if n_ones % 2 == 0: # even number of ones (bad)  
 par += 'X' # indicate bad  
 if not_end: # still in valid sequence  
 pen += 1 # add to penalty  
 else: # odd number of ones: parity good  
 par += '.' # indicate good  
 strn = '' # initialize empty string to build binary 
 for val in parcel: # run through each list element in chunk 
 strn += "%d" % val # append 1 or 0 as string  
 map_ind = int(strn[:per-1][::-1],2) # ignore parity, rev. order, binary to int  
 msg += charmap[map_ind] # grab character corresponding to data value 
 if not_end: # still have not seen end sentinel  
 lrc ^= map_ind # accumulate LRC for valid data  
 if (msg[-1] == '?' and ind > XX): # end sentinel for all tracks; after so many 
 not_end = False # reached end of legit section  
print "%s LRC = %s" % (msg,charmap[lrc])  
print "%s; penalty = %d" % (par,pen)  

A	Diagnos4c	Trick	

•  If	you	need	to	sort	out	what’s	happening	in	your	
code,	especially	rela4ve	to	the	signal	4ming,	insert	a	
pulse	to	hardware:	

•  Creates	0.1	ms	pulse	on	some	GPIO	pin	
–  can	then	see	where	this	comes,	and	if	it	happens	at	all	

Lecture	12:	Data	Streams	 UCSD	Physics	122	 21	

GPIO.output(MONITOR_BCM,GPIO.HIGH)
time.sleep(0.0001)
GPIO.output(MONITOR_BCM,GPIO.LOW)

Lecture 12: Data Streams UCSD Physics 122 22

Reading	

•  For	magne4c	stripe	stuff,	see:		
–  hYp://en.wikipedia.org/wiki/Magne4c_stripe_card	
–  hYp://money.howstuffworks.com/ques4on503.htm	

–  hYp://stripesnoop.sourceforge.net/faq.html	
–  hYp://stripesnoop.sourceforge.net/devel/phrack37.txt	

