

Comparators, FETS, & Logic

Other Useful Devices

Comparators

- It is very often useful to generate a strong electrical signal associated with some event
- If we frame the "event" in terms of a voltage threshold, then we use a comparator to tell us when the threshold is exceeded
 - could be at a certain temperature, light level, etc.: anything that can be turned into a voltage
- Could use an op-amp without feedback
 - set inverting input at threshold
 - feed test signal into non-inverting output
 - op-amp will rail (negative rail if test < reference; positive rail if test > reference)
- But op-amps have relatively slow "slew rate"
 - 15 V/µs means 2 µs to go rail-to-rail if powered ±15 V

Enter the comparator

- When $V_{in} < V_{ref}$, V_{out} is pulled high (through the pull-up resistor usually 1 k Ω or more)
 - this arrangement is called "open collector" output: the output is basically the collector of an npn transistor: in saturation it will be pulled toward the emitter (ground), but if the transistor is not driven (no base current), the collector will float up to the pull-up voltage
- The output is a "digital" version of the signal
 - with settable low and high values (here ground and 5V)
- Comparators also good at turning a slow edge into a fast one
 - for better timing precision

- Relays provide a way to switch on/off an AC line with a logic signal
- Simple: 5 volts in \rightarrow AC switch flipped on
- Often will phase to AC line so it turns on at zerocrossing, so-as not to jar electronics

- Optoisolators provide a means of connecting signals without copper (so can isolate grounds, noise, etc.)
 - LED shines light on a phototransistor, bringing it into saturation
 - in the above circuit, the output is pulled up to 5 V when the input is *inactive*, and drops near ground when the input sees a voltage

Logic Families

- TTL: transistor-transistor logic: BJT based
 - chips have L, LS, F, AS, ALS, or H designation
 - output: logic high has $V_{OH} > 3.3 V$; logic low has $V_{OL} < 0.35 V$
 - input: logic high has $V_{IH} > 2.0 V$; logic low has $V_{IL} < 0.8 V$
 - dead zone between 0.8V and 2.0 V
 - nominal threshold: $V_T = 1.5 V$
- CMOS: complimentary MOSFET
 - chips have HC or AC designation
 - output: logic high has $V_{OH} > 4.7 V$; logic low has $V_{OL} < 0.2 V$
 - input: logic high has $V_{IH} > 3.7 V$; logic low has $V_{IL} < 1.3 V$
 - dead zone between 1.3V and 3.7 V
 - nominal threshold: $V_T = 2.5 V$
 - chips with HCT are CMOS with TTL-compatible thresholds

Logic Family Levels

- CMOS is closer to the "ideal" that logic low is zero volts and logic high is 5 volts
 - and has a bigger dead zone
- The ?CT line accommodates both the TTL/CMOS levels
- Example: A TTL device must:
 - interpret any input below 0.8 V as logic low
 - interpret any input above 2.0 V as logic high
 - put out at least 3.3 V for logic high
 - put out less than 0.35 V for logic low
- The differing input/output thresholds lead to noise immunity

Field-Effect Transistors

- The "standard" npn and pnp transistors use base-current to control the transistor current
- FETs use a field (voltage) to control current
- Result is no current flows into the control "gate"
- FETs are used almost exclusively as switches
 - pop a few volts on the control gate, and the effective resistance is nearly zero

ON CHARACTERISTICS*							
VGS(th)	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$		0.8	2.1	3	v
FDS(ON)	Static Drain-Source	$V_{\text{GS}}=10V, I_{\text{D}}=0.5A$			1.2	5	Ω
	On-Resistance		T _C = 125℃		1.9	9	Ω
VDS(ON)	Drain-Source On-Voltage	$V_{GS} = 10V, I_D = 0.5A$ $V_{GS} = 4.5V, I_D = 75 \text{ mA}$			0.6	2.5	v
					0.14	0.4	v
ID(ON)	On-State Drain Current	$V_{\text{GS}}=4.5V, V_{\text{DS}}=10V$		75	600		mA
9 _{FS}	Forward Transconductance	$V_{DS} = 10V, I_{D} = 200 mA$		100	320		ms

2N7000 FET

Lecture 11: Logic

FET Generalities

BJT

note pinout correspondence

- Every FET has at least three connections:
 - source (S)
 - akin to emitter (E) on BJT
 - drain (D)
 - akin to collector (C) on BJT
 - gate (G)
 - akin to base (B) on BJT
- Some have a body connection too
 - though often tied to source

FET Types

- Two flavors: n and p
- Two types: JFET, MOSFET
- MOSFETs more common
- JFETs conduct "by default"
 - when $V_{gate} = V_{source}$
- MOSFETs are "open" by default
 - must turn on deliberately
- JFETs have a p-n junction at the gate, so must not forward bias more than 0.6 V
- MOSFETs have total isolation: do what you want

MOSFET Switches

- MOSFETs, as applied to logic designs, act as voltagecontrolled switches
 - n-channel MOSFET is closed (conducts) when positive voltage (+5 V) is applied, open when zero voltage
 - p-channel MOSFET is open when positive voltage (+5 V) is applied, closed (conducts) when zero voltage
 - (MOSFET means metal-oxide semiconductor field effect transistor)

Data manipulation

А

NOT

0

0

- All data manipulation is based on *logic*
- Logic follows well defined rules, producing predictable digital output from certain input
- Examples:

An inverter (NOT) from MOSFETS: A NOTinput output ov for 5v ov 4v 0 11 0

- 0 V input turns OFF lower (n-channel) FET, turns ON upper (p-channel), so output is connected to +5 V
- 5 V input turns ON lower (n-channel) FET, turns OFF upper (p-channel), so output is connected to 0 V

- Net effect is logic inversion: $0 \rightarrow 5; 5 \rightarrow 0$

• Complementary MOSFET pairs → CMOS

Lecture 11: Logic

UCSD Physics 122

A NAND gate from scratch:

•

Both inputs at zero:

14

A NOR gate from scratch:

15

All Logic from NANDs Alone

One last type: XOR

- XOR = (A NAND B) AND (A OR B)
- And this you already know you can make from composite NAND gates (though requiring 6 total)
- Then, obviously, XNOR is the inverse of XOR
 - so just stick an inverter on the output of XOR

Rule the World

- Now you know how to build ALL logic gates out of n-channel and p-channel MOSFETs
 - because you can build a NAND from 4 MOSFETs
 - and all gates from NANDs
- That means you can build computers

• So now you can rule the world!

Arithmetic Example

• Let's add two binary numbers:

```
00101110 = 46 + 01001101 = 77
```

- 01111011 = 123
- How did we do this? We have rules:
 - 0 + 0 = 0; 0 + 1 = 1 + 0 = 1; 1 + 1 = 10 (2): (0, carry 1);
 - 1 + 1 + (carried 1) = 11 (3): (1, carry 1)
- Rules can be represented by gates
 - If two input digits are A & B, output digit looks like XOR operation (but need to account for carry operation)

Lecture 11: Logic

Can make rule table:

- Digits A & B are added, possibly accompanied by carry instruction from previous stage
- Output is new digit, D, along with carry value
 - D looks like XOR of A & B when C_{in} is 0
 - D looks like XNOR of A & B when C_{in} is 1
 - C_{out} is 1 if two or more of A, B, C_{in} are 1

Binary Arithmetic in Gates

8-bit binary arithmetic (cascaded)

00101110 = 46+01001101= 01111011 = 123

Carry-out tied to carry-in of next digit.

"Magically" adds two binary numbers

Up to \sim 300 transistors for this basic function. Also need -, \times , /, & lots more.

1 LSB = Least Significant Bit

Integrated one-digit binary arithmetic unit (prev. slide)

UCSD Physics 122

Computer technology built up from pieces

- The foregoing example illustrates the way in which computer technology is built
 - start with little pieces (transistors acting as switches)
 - *combine* pieces into functional blocks (gates)
 - *combine* these blocks into higher-level function (e.g., addition)
 - *combine* these new blocks into cascade (e.g., 8-bit addition)
 - blocks get increasingly complex, more capable
- Nobody on earth understands modern chip inside-out
 - Grab previously developed blocks and run
 - Let a computer design the gate arrangements (eyes closed!)

Reading

- As before, *The Art of Electronics* by Horowitz and Hill, and the *Student Manual* accompaniment by Hayes and Horowitz are valuable resources
- Text reading:
 - p. 432 (p. 461 in 3rd ed.) on comparators
 - 6.2.5 on relays (esp. solid state)
 - pp. 461–462 (490–491 in 3rd) paragraph on opto-isolators
 - 6.6.10 on logic families
 - p. 410 (p. 449 in 3rd) on FETs
 - 6.6.1, 6.6.2, 6.6.3, 6.6.4 on digital logic
 - 6.6.7 on DACs, ADCs