501010101100010 1100100010110101

Comparators, FETS, \& Logic

Other Useful Devices

Comparators

- It is very often useful to generate a strong electrical signal associated with some event
- If we frame the "event" in terms of a voltage threshold, then we use a comparator to tell us when the threshold is exceeded
- could be at a certain temperature, light level, etc.: anything that can be turned into a voltage
- Could use an op-amp without feedback
- set inverting input at threshold
- feed test signal into non-inverting output
- op-amp will rail (negative rail if test < reference; positive rail if test > reference)
- But op-amps have relatively slow "slew rate"
- $15 \mathrm{~V} / \mu \mathrm{s}$ means 2μ s to go rail-to-rail if powered $\pm 15 \mathrm{~V}$

Enter the comparator

- When $\mathrm{V}_{\text {in }}<\mathrm{V}_{\text {ref }}, \mathrm{V}_{\text {out }}$ is pulled high (through the pull-up resistorusually $1 \mathrm{k} \Omega$ or more)
- this arrangement is called "open collector" output: the output is basically the collector of an npn transistor: in saturation it will be pulled toward the emitter (ground), but if the transistor is not driven (no base current), the collector will float up to the pull-up voltage
- The output is a "digital" version of the signal
- with settable low and high values (here ground and 5V)
- Comparators also good at turning a slow edge into a fast one
- for better timing precision

Relays

- Relays provide a way to switch on/off an AC line with a logic signal
- Simple: 5 volts in \rightarrow AC switch flipped on
- Often will phase to AC line so it turns on at zerocrossing, so-as not to jar electronics

Opto-isolators

PIN 1. LED ANODE
2. LED CATHODE
3. N.C.
4. EMITTER
5. COLLECTOR
6. BASE

- Optoisolators provide a means of connecting signals without copper (so can isolate grounds, noise, etc.)
- LED shines light on a phototransistor, bringing it into saturation
- in the above circuit, the output is pulled up to 5 V when the input is inactive, and drops near ground when the input sees a voltage

Logic Families

- TTL: transistor-transistor logic: BJT based
- chips have L, LS, F, AS, ALS, or H designation
- output: logic high has $\mathrm{V}_{\mathrm{OH}}>3.3 \mathrm{~V}$; logic low has $\mathrm{V}_{\mathrm{OL}}<0.35 \mathrm{~V}$
- input: logic high has $\mathrm{V}_{\text {IH }}>2.0 \mathrm{~V}$; logic low has $\mathrm{V}_{\text {IL }}<0.8 \mathrm{~V}$
- dead zone between 0.8 V and 2.0 V
- nominal threshold: $\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$
- CMOS: complimentary MOSFET
- chips have HC or AC designation
- output: logic high has $\mathrm{V}_{\mathrm{OH}}>4.7 \mathrm{~V}$; logic low has $\mathrm{V}_{\mathrm{OL}}<0.2 \mathrm{~V}$
- input: logic high has $\mathrm{V}_{\text {IH }}>3.7 \mathrm{~V}$; logic low has $\mathrm{V}_{\text {IL }}<1.3 \mathrm{~V}$
- dead zone between 1.3 V and 3.7 V
- nominal threshold: $\mathrm{V}_{\mathrm{T}}=2.5 \mathrm{~V}$
- chips with HCT are CMOS with TTL-compatible thresholds

Logic Family Levels

- CMOS is closer to the "ideal" that logic low is zero volts and logic high is 5 volts
- and has a bigger dead zone
- The ?CT line accommodates both the TTL/CMOS levels
- Example: A TTL device must:
- interpret any input below 0.8 V as logic low
- interpret any input above 2.0 V as logic high
- put out at least 3.3 V for logic high
- put out less than 0.35 V for logic low
- The differing input/output thresholds lead to noise immunity

Field-Effect Transistors

- The "standard" npn and pnp transistors use base-current to control the transistor current
- FETs use a field (voltage) to control current
- Result is no current flows into the control "gate"
- FETs are used almost exclusively as switches
- pop a few volts on the control gate, and the effective resistance is nearly zero

2N7000 FET

ON CHARACTERISTICS*							
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{l}_{\mathrm{D}}=1 \mathrm{~mA}$		0.8	2.1	3	V
ros(ON)	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=0.5 \mathrm{~A}$			1.2	5	Ω
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		1.9	9	Ω
$\mathrm{V}_{\text {DS(ON) }}$	Drain-Source On-Voltage	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$			0.6	2.5	V
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~mA}$			0.14	0.4	V
IDPON)	On-State Drain Current	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$		75	600		mA
$\mathrm{gFS}^{\text {S }}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=200 \mathrm{~mA}$		100	320		ms

FET Generalities

- Every FET has at least three

BJT

note pinout correspondence

FET Types

- Two flavors: n and p
- Two types: JFET, MOSFET
- MOSFETs more common
- JFETs conduct "by default"
- when $V_{\text {gate }}=V_{\text {source }}$
- MOSFETs are "open" by default
- must turn on deliberately
- JFETs have a p-n junction at the gate, so must not forward bias more than 0.6 V
- MOSFETs have total isolation: do what you want

MOSFET Switches

- MOSFETs, as applied to logic designs, act as voltagecontrolled switches
- n-channel MOSFET is closed (conducts) when positive voltage (+5 V) is applied, open when zero voltage
$-p$-channel MOSFET is open when positive voltage (+5 V) is applied, closed (conducts) when zero voltage
- (MOSFET means metal-oxide semiconductor field effect transistor)

Data manipulation

- All data manipulation is based on logic

- Logic follows well defined rules, producing predictable digital output from certain input
- Examples:

AND	
A B	C
00	0
01	0
10	0
11	1

OR		
A	B	C
0	0	0
0	1	1
1	0	1
1	1	1

XOR		
A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

NAND		
A	B	C
0	0	1
0	1	1
1	0	1
1	1	0

NOR

A	B	C
0	0	1
0	1	0
1	0	0
1	1	0

bubbles mean inverted (e.g., NOT AND \rightarrow NAND)

An inverter (NOT) from MOSFETS: A-

- 0 V input turns OFF lower (n-channel) FET, turns ON upper (p -channel), so output is connected to +5 V
- 5 V input turns ON lower (n-channel) FET, turns OFF upper (p-channel), so output is connected to 0 V
- Net effect is logic inversion: $0 \rightarrow 5 ; 5 \rightarrow 0$
- Complementary MOSFET pairs \rightarrow CMOS

A NAND gate from scratch:

- Both inputs at zero:

NAND

A	B	C
0	0	1
0	1	1
1	0	1
1	1	0

A NOR gate from scratch:

- Both inputs at zero:
- IN A at $0 \mathrm{~V}, \mathrm{IN}$ B at 5 V :
- opposite of previous entry
- result is output LOW

A	B	C
0	0	1
0	1	0
1	0	0
1	1	0
		0

All Logic from NANDs Alone

One last type: XOR

- $X O R=(A$ NAND B) AND (A OR B)
- And this you already know you can make from composite NAND gates (though requiring 6 total)
- Then, obviously, XNOR is the inverse of XOR
- so just stick an inverter on the output of XOR

Rule the World

- Now you know how to build ALL logic gates out of n-channel and p-channel MOSFETs
- because you can build a NAND from 4 MOSFETs
- and all gates from NANDs
- That means you can build computers
- So now you can rule the world!

Arithmetic Example

- Let's add two binary numbers:

$$
\begin{aligned}
00101110 & =46 \\
+\underline{01001101} & =77 \\
01111011 & =123
\end{aligned}
$$

- How did we do this? We have rules:

$$
\begin{aligned}
& 0+0=0 ; 0+1=1+0=1 ; 1+1=10(2):(0, \text { carry } 1) ; \\
& 1+1+(\text { carried } 1)=11(3):(1, \text { carry } 1)
\end{aligned}
$$

- Rules can be represented by gates
- If two input digits are A \& B, output digit looks like XOR operation (but need to account for carry operation)

XOR		
A B		
0		
0		

Can make rule table:

$\mathrm{C}_{\text {in }}$	A	B	D	$\mathrm{C}_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0		1
0	1	1		
1	0	0		1
1	0	1	1	0
1	1	0	0	1
1	1	1	0	1

- Digits A \& B are added, possibly accompanied by carry instruction from previous stage
- Output is new digit, D , along with carry value
- D looks like XOR of $A \& B$ when $C_{\text {in }}$ is 0
$-D$ looks like XNOR of $A \& B$ when $C_{\text {in }}$ is 1
$-C_{\text {out }}$ is 1 if two or more of $A, B, C_{\text {in }}$ are 1

Binary Arithmetic in Gates

Input					Intermediate			
Output								
A	B	$\mathrm{C}_{\text {in }}$	E	F	H	G	D	$\mathrm{C}_{\text {out }}$
0	0	0	0	0	0	0	0	0
0	1	0	1	1	0	0	1	0
1	0	0	1	1	0	0	1	0
1	1	0	0	1	0	1	0	1
0	0	1	0	0	0	0	1	0
0	1	1	1	1	1	0	0	1
1	0	1	1	1	1	0	0	1
1	1	1	0	1	1	1	1	1
Lecture	$11:$ Logic							

Each digit requires 6 gates
Each gate has ~ 6 transistors
~ 36 transistors per digit

8-bit binary arithmetic (cascaded)

Computer technology built up from pieces

- The foregoing example illustrates the way in which computer technology is built
- start with little pieces (transistors acting as switches)
- combine pieces into functional blocks (gates)
- combine these blocks into higher-level function (e.g., addition)
- combine these new blocks into cascade (e.g., 8-bit addition)
- blocks get increasingly complex, more capable
- Nobody on earth understands modern chip inside-out
- Grab previously developed blocks and run
- Let a computer design the gate arrangements (eyes closed!)

Reading

- As before, The Art of Electronics by Horowitz and Hill, and the Student Manual accompaniment by Hayes and Horowitz are valuable resources
- Text reading:
- p. 432 (p. 461 in $3^{\text {rd }}$ ed.) on comparators
- 6.2 .5 on relays (esp. solid state)
- pp. 461-462 (490-491 in $3^{\text {rd }}$) paragraph on opto-isolators
- 6.6.10 on logic families
- p. 410 (p. 449 in $3^{\text {rd }}$) on FETs
- 6.6.1, 6.6.2, 6.6.3, 6.6.4 on digital logic
- 6.6.7 on DACs, ADCs

