Digital to Analog Converter

A way to explore Op-amps and GPIO

The Point of DAC

- Substantial and growing digital interface to analog world
- Two directions of conversion:
 - ADC: analog to digital converter
 - more common; analog input to computer
 - sensors of all types produce voltage proportional to quantity of interest
 - DAC: digital to analog converter
 - so computer can create analog output (voltage)
 - more fundamental; at core of ADC in guess-and-check scheme

Bit Level

- We'll do 8-bit DAC
 - 256 values; considered pretty crude
 - roughly 20 mV steps if 5-volt range
- 10 bit: 1,024 values; still at low end
- 12-bit: 4,096 values; often a reasonable choice
 - like the ADS1015 unit we used for RTD work
- 14-bit: 16,384 values; seldom need more
 - 0.3 mV resolution at 5 V starts to strain meaningfulness
- 16-bit: 65,536; high-end
 - $-75 \,\mu\text{V}$ resolution at 5 V; fairly common as 16 bits convenient
 - but often least significant bits lack practical meaning

8-bit DAC Concept: Current Summing $B_7 \sim \uparrow \uparrow$ $2 \times R_1$ $D_6 \sim$ R_2 4×R₁ $D_{r} \sim \bigwedge$ R_{f} ╋ 8×R₁ $D_4 \sim \mathcal{N}$ $B_3 \sim A_1$ $\mathsf{V}_{\mathsf{out}}$ 2×R $D_2 \sim \wedge$ 16×R₂ 4×R₁ $D_1 \sim \mathcal{N}$ ╋ 8×R₁ D₀ -

- Factors of 2 in identical 4-bit "nibble" stages
- Factor of 16 in second stage
- Same voltage (or zero) at each D_n input (digital)
 - voltage at intermediate nodes multiple of $-V_{digital}/8$ times integer 0–15
- Can tune final R_f to achieve desired scale

Cleaning Up Noisy Digital Input

- The D₀...D₇ inputs should all be the same voltage, and a known/reliable one
- But digital output from the Pi is not guaranteed to be steady or even the same from one pin to the next
- Want a way to use digital input to "switch-in" a clean reference
- Enter the MOSFET

Input Circuit Preview

- 5V reference at top
- 4-bits of input control MOSFETs
- Note 1:2:4:8 resistors
- 10k resistors pull down to ground when digital zero
- LED & limiter indicate ON

Field-Effect Transistors

- The "standard" npn and pnp transistors use base-current to control the transistor current
- FETs use a field (voltage) to control current
- Result is no current flows into the control "gate"
- FETs are used almost exclusively as switches
 - pop a few volts on the control gate, and the effective resistance is nearly zero

ON CHARA	CTERISTICS*						
VGS(th)	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$		0.8	2.1	3	v
rds(ON)	Static Drain-Source	$V_{\text{GS}}=10V, I_{\text{D}}=0.5A$			1.2	5	Ω
	On-Resistance		T _C = 125°C		1.9	9	Ω
VDS(ON)	Drain-Source On-Voltage	$V_{GS} = 10V, I_D = 0.5A$ $V_{GS} = 4.5V, I_D = 75 \text{ mA}$			0.6	2.5	v
					0.14	0.4	v
ID(ON)	On-State Drain Current	$V_{GS} = 4.5V, V_{DS} = 10V$		75	600		mA
9 _{FS}	Forward Transconductance	$V_{\rm DS} = 10V, I_{\rm D} = 200 {\rm m}$	Ą	100	320		ms

2N7000 FET

Lecture 10: DAC & GPIO

FET Generalities

BJT

note pinout correspondence

- Every FET has at least three connections:
 - source (S)
 - akin to emitter (E) on BJT
 - drain (D)
 - akin to collector (C) on BJT
 - gate (G)
 - akin to base (B) on BJT
- Some have a body connection too
 - though often tied to source

FET Types

- Two flavors: n and p
- Two types: JFET, MOSFET
- MOSFETs more common
- JFETs conduct "by default"
 - when $V_{gate} = V_{source}$
- MOSFETs are "open" by default
 - must turn on deliberately
- JFETs have a p-n junction at the gate, so must not forward bias more than 0.6 V
- MOSFETs have total isolation: do what you want

MOSFET Switches

- MOSFETs, as applied to logic designs, act as voltagecontrolled switches
 - n-channel MOSFET is closed (conducts) when positive voltage (+5 V) is applied, open when zero voltage
 - p-channel MOSFET is open when positive voltage (+5 V) is applied, closed (conducts) when zero voltage
 - (MOSFET means metal-oxide semiconductor field effect transistor)

Input Circuit Revisited

- 5V reference at top
- Digital LOW on gate has MOSFET OFF
 - no current
 - drain at 5V
- Digital HIGH makes MOSFET like a short
 - current flows (to opamp summing junction)
 - drain will be near ground
- 3.3 V from GPIO plenty to switch MOSFETs

Lab 7a

- Build 8-bit input stage and DAC on breadboard and verify operation
 - hits expected target values given input bit pattern
- Ready for Lab 7b; flinging digital data from the Raspberry Pi

	Raspberry Pi 4	I B J8	GPIO Header		
Pin#	NAME		NAME	Pin#	
01	3.3v DC Power		DC Power 5v	02	
03	GPIO02 (SDA1, I ² C)	$\bigcirc \bigcirc$	DC Power 5v	04	
05	GPIO03 (SCL1, I ² C)	$\bigcirc \bigcirc$	Ground	06	
07	GPIO04 (GPCLK0)	$\bigcirc \bigcirc$	(TXD0, UART) GPIO14	08	
09	Ground	$\bigcirc \bigcirc$	(RXD0, UART) GPIO15	10	
11	GPIO17	\mathbf{O}	(PWM0) GPIO18	12	
13	GPIO27	00	Ground	14	
15	GPIO22	00	GPIO23	16	
17	3.3v DC Power	00	GPIO24	18	
19	GPIO10 (SPI0_MOSI)	$\bigcirc \bigcirc$	Ground	20	
21	GPIO09 (SPI0_MISO)	$\bigcirc \bigcirc$	GPIO25	22	
23	GPIO11 (SPI0_CLK)	\odot	(SPI0_CE0_N) GPIO08	24	
25	Ground	$\bigcirc \bigcirc$	(SPI0_CE1_N) GPIO07	26	
27	GPIO00 (SDA0, I ² C)	\odot	(SCL0, I ² C) GPIO01	28	
29	GPIO05	$\bigcirc \bigcirc$	Ground	30	
31	GPIO06	00	(PWM0) GPIO12	32	
33	GPIO13 (PWM1)	00	Ground	34	
35	GPIO19	$\mathbf{O}\mathbf{O}$	GPIO16	36	
37	GPIO26	$\bigcirc \bigcirc$	GPIO20	38	
39	Ground	00	GPIO21	40	
01 03	Raspberry Pi 4 TR01 TR03	B J1	4 PoE Header TR00 TR02	02	
	Pinout Gr	oupin	ig Legend		
Inter-Inte	egrated Circuit Serial Bus	00	Serial Peripheral Interface	Bus	
Ungro	Ungrouped/Un-Allocated GPIO Reserved for EEPROM		Universal Asynchronous Receiver-Transmitter		
Rev. 2 19/06/2019 CGS www.element14.com/RaspberryPi					

RPi Interface

- 40-pin header on side of RPi
- serial is orange (UART)
- I²C is light blue
- SPI is purple
- GPIO is green
 - and can also use any pin labeled GPIOxx

GPIO on the Raspberry Pi

- 28 pins labeled GPIO00 to GPIO27
 - even those dseignated for SPI, I²C, UART fair game
 - just not the 12 power and ground pins!
- Numbering scheme is called BCM
 - Broadcom SOC (system on chip)
 - adheres to native numbering of Broadcom CPU used in Pi
 - does not follow 40-pin header numbering; skips around
- Digital values on 3.3 V standard
- Low-level C programs can switch at > 20 MHz
- Python native library switches around 70 kHz
 - see

https://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpiospeed/

Python Interface

- Library called RPi.GPIO installed (by default) on Pi
- Example; toggle pin 40 (GPIO21)

GPIO.LOW and GPIO.HIGH just map to integers 0 and 1, actually

See <u>https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/</u> for more

Lab 7b

- Purpose: send data to DAC from Pi
 - ultimately, generate creative/custom waveform
 - i.e., something a standard function generator can't do
- Lab 7b nominally Thanksgiving week
 - but may wish to do early; just keep going after 7a
 - single write-up due Dec. 4

Tips for Lab 7b

- Helps a lot to use sequential BCM numbers
 - allows simple range () loop to increment
 - makes coding compact, efficient, easy to modify
 - can also send list values to write all at once (later step)
- Determining bit values in integer
 - assume LSB (least significant bit) at bcm_low
 - bitval = (intval >> (bcm_num bcm_low)) & 0x01
 - bcm_num loops through BCM GPIO numbers
 - right shift appropriate number of bits then mask LSB

Lab 7b, continued

- After initial static outputs (to check behavior), go dynamic
- Initially, just a ramp
 - integer increments 0 to 255; back to 0 and on and on
 - shortcut: intval += 1 (same as intval = intval + 1)
 - then check if > 255 and reset to 0 if so
 - can nest inside: while True: for indefinite repeat
 - ctrl-C to terminate
 - at first, will be ratty and spiky due to non-simultaneous bit changes
 - will explore bit order and also list-write
 - then will filter out spikes