

diode bridge

Electronics Overview

Basic Circuits, Power Supplies, Transistors, Cable Impedance

Basic Circuit Analysis

- What we won't do:
 - common electronics-class things: RLC, filters, detailed analysis
- What we will do:
 - set out basic relations
 - look at a few examples of fundamental importance (mostly resistive circuits)
 - look at diodes, voltage regulation, transistors
 - discuss impedances (cable, output, etc.)

The Basic Relations

- V is voltage (volts: V); I is current (amps: A); R is resistance (ohms: Ω); C is capacitance (farads: F); L is inductance (henrys: H)
- Ohm's Law: V = IR; $V = \frac{1}{C} \int Idt$; V = L(dI/dt)
- Power: $P = IV = V^2/R = I^2R$
- Resistors and inductors in series add
- Capacitors in parallel add
- Resistors and inductors in parallel, and capacitors in series add according to: $\frac{1}{X_{tot}} = \frac{1}{X_1} + \frac{1}{X_2} + \frac{1}{X_3} + \dots$

Example: Voltage divider

- Voltage dividers are a classic way to set a voltage
- Works on the principle that all charge flowing through the first resistor goes through the second
 - so $\Delta V \propto R$ -value
 - provided any load at output is negligible:
 otherwise some current goes there too
- So $V_{\text{out}} = V(R_2/(R_1 + R_2))$
- R₂ here is a variable resistor, or potentiometer, or "pot"
 - typically three terminals: R_{12} is fixed, tap slides along to vary R_{13} and R_{23} , though $R_{13} + R_{23} = R_{12}$ always

Real Batteries: Output Impedance

D-cell example: 6A out of 1.5 V battery indicates 0.25Ω output impedance

- A power supply (battery) is characterized by a voltage
 (V) and an output impedance (R)
 - sometimes called source impedance
- Hooking up to load: R_{load} , we form a voltage divider, so that the voltage applied by the battery terminal is actually $V_{out} = V(R_{load}/(R+R_{load}))$
 - thus the smaller R is, the "stiffer" the power supply
 - when V_{out} sags with higher load current, we call this "droop"
- Example: If 10.0 V power supply droops by 1% (0.1 V) when loaded to 1 Amp (10 Ω load):
 - internal resistance is 0.1 Ω
 - called *output impedance* or *source impedance*
 - may vary with load, though (not a real resistor)

Power Supplies and Regulation

- A power supply typically starts with a transformer
 - to knock down the 340 V peak-to-peak (120 V AC) to something reasonable/manageable
- We will be using a center-tap transformer

- $(A' B') = (winding ratio) \times (A B)$
 - when A > B, so is A' > B'
- geometry of center tap (CT) guarantees it is midway between A' and
 B' (frequently tie this to ground so that A' = -B')
- note that secondary side floats: no ground reference built-in

Transformer is just wire coiled around metal

- Magnetic field is generated by current in primary coil
- Iron core channels magnetic field through secondary coil
- Secondary Voltage is $V_2 = (N_2/N_1) V_1$
- Secondary Current is $I_2 = (N_1/N_2) I_1$
- But Power in = Power out
 - negligible power lost in transformer
- Works only for AC, not DC

Typical Transformers

transformers usually heavy due to iron core

Lecture 8: Electronics

UCSD Physics 122

120 VAC is a root-mean-square number: peak-to-peak is 340 Volts!

AC Receptacle

- Receptacles have three holes each
- Lower (rounded) hole is earth ground
 - connected to pipes, usually
 - green wire
- Larger slot is "neutral"
 - for current "return"
 - never far from ground
 - white wire
 - if wired correctly
- Smaller slot is "hot"
 - swings to +170 and -170
 - black wire
 - dangerous one

Diodes

• Diodes are essentially one-way current gates

Diode Makeup

- Diodes are made of semiconductors (usually silicon)
- Essentially a stack of *p*-doped and *n*-doped silicon to form a *p-n junction*
 - doping means deliberate impurities that contribute extra electrons (*n*-doped) or "holes" for electrons (*p*-doped)
- Transistors are *n-p-n* or *p-n-p* arrangements of semiconductors

LEDs: Light-Emitting Diodes

- Main difference is material is more exotic than silicon used in ordinary diodes/ transistors
 - typically 2-volt drop instead of 0.6 V drop
- When electron flows through LED, loses energy by emitting a photon of light rather than vibrating lattice (heat)
- LED efficiency is 30% (compare to incandescent bulb at 10%)
- Must supply current-limiting resistor in series:
 - figure on 2 V drop across LED; aim for 1–10 mA of current

Lecture 8: Electronics

Getting DC back out of AC

- AC provides a means for us to distribute electrical power, but most devices actually *want* DC
 - bulbs, toasters, heaters, fans don't care: plug straight in
 - sophisticated devices care because they have diodes and transistors that require a certain polarity
 - rather than oscillating polarity derived from AC
 - this is why battery orientation matters in most electronics
- Use diodes to "rectify" AC signal
- Simplest (half-wave) rectifier uses one diode:

Doing Better: Full-wave Diode Bridge

- The diode in the rectifying circuit simply prevented the negative swing of voltage from conducting
 - but this wastes half the available cycle
 - also very irregular (bumpy): far from a "good" DC source
- By using four diodes, you can recover the negative swing:

Full-Wave Dual-Supply

- By grounding the center tap, we have two opposite AC sources
 - the diode bridge now presents + and voltages relative to ground
 - each can be separately smoothed/regulated
 - cutting out diodes A and D makes a half-wave rectifier

Smoothing out the Bumps

- Still a bumpy ride, but we can smooth this out with a capacitor
 - capacitors have capacity for storing charge
 - acts like a reservoir to supply current during low spots
 - voltage regulator smoothes out remaining ripple

How smooth is smooth?

- An RC circuit has a time constant $\tau = RC$
 - because dV/dt = I/C, and $I = V/R \rightarrow dV/dt = V/RC$
 - so V is $V_0 \exp(\pm t/\tau)$
- Any exponential function starts out with slope = Amplitude/ τ
- So if you want < 10% ripple over 120 Hz (8.3 ms) timescale...
 - must have $\tau = RC > 83$ ms
 - if *R* = 100 Ω, *C* > 830 μF

Regulating the Voltage

- The unregulated, ripply voltage may not be at the value you want
 - depends on transformer, etc.
 - suppose you want 15.0 V
- You *could* use a voltage divider to set the voltage
- But it would droop under load
 - output impedance $\rightarrow R_1 \mid \mid R_2$
 - need to have very small R_1 , R_2 to make "stiff"
 - the divider will draw a lot of current
 - perhaps straining the source
 - power expended in divider >> power in load
- Not a "real" solution
- Important note: a "big load" means a small resistor value: 1 Ω demands more current than 1 M Ω

V_{out}

load

 R_1

*R*₂

The Zener Regulator

- Zener diodes break down at some reverse voltage
 - can buy at specific breakdown voltages
 - as long as *some* current goes through zener, it'll work
 - good for rough regulation
- Conditions for working:
 - let's maintain some minimal current, I_z through zener (say a few mA)
 - then $(V_{in} V_{out})/R_1 = I_z + V_{out}/R_{load}$ sets the requirement on R_1
 - because presumably all else is known
 - if load current increases too much, zener shuts off (node drops below breakdown) and you just have a voltage divider with the load

high slope is what makes the zener a decent voltage regulator

Voltage Regulator IC

- Can trim down ripply voltage to precise, rock-steady value
- Now things get complicated!
 - We are now in the realm of integrated circuits (ICs)
- ICs are whole circuits in small packages
- ICs contain resistors, capacitors, diodes, transistors, etc.

Lecture 8: Electronics

D9007740-1

Voltage Regulators

- The most common voltage regulators are the LM78XX (+ voltages) and LM79XX (- voltages)
 - XX represents the voltage
 - 7815 is +15; 7915 is -15; 7805 is +5, etc
 - typically needs input > 3 volts above output (reg.) voltage

пъ						
•	PIN	7915	7815	LM317		
	1	GND	IN	ADJ.		
	2	IN	GND	OUT		
ᡃᡣ᠊ᡣ᠊ᠬ	3	OUT	OUT	IN		
Ш	HS	IN	GND	OUT	◄	beware that housing is not always ground
123						

- A versatile regulator is the LM317 (+) or LM337 (-)
 - 1.2-37 V output
 - $V_{\text{out}} = 1.25(1+R_2/R_1) + I_{\text{adj}}R_2$
 - I_{adj} is small: 50 μA
 - Up to 1.5 A
 - picture at right can go to 25 V
 - datasheetcatalog.com for details

Lecture 8: Electronics

Transistors

- Transistors are versatile, highly non-linear devices
- Two frequent modes of operation:
 - amplifiers/buffers
 - switches
- Two main flavors:
 - npn (more common) or pnp, describing doping structure
- Also many varieties:
 - bipolar junction transistors (BJTs) such as npn, pnp
 - field effect transistors (FETs): n-channel and pchannel
 - metal-oxide-semiconductor FETs (MOSFETs)
- We'll just hit the essentials of the BJT here
 - MOSFET in later lecture

BJT Amplifier Mode

- Central idea is that when in the right regime, the BJT collector-emitter current is proportional to the base current:
 - namely, $I_{ce} = \beta I_{b}$, where β (sometimes h_{fe}) is typically ~100
 - In this regime, the base-emitter voltage is ~0.6 V
 - below, $I_{\rm b} = (V_{\rm in} 0.6)/R_{\rm b}$; $I_{\rm ce} = \beta I_{\rm b} = \beta (V_{\rm in} 0.6)/R_{\rm b}$
 - so that $V_{\text{out}} = V_{\text{cc}} I_{\text{ce}}R_{\text{c}} = V_{\text{cc}} \beta(V_{\text{in}} 0.6)(R_{\text{c}}/R_{\text{b}})$
 - ignoring DC biases, wiggles on V_{in} become $\beta (R_c/R_b)$ bigger (and inverted): thus amplified

Lecture 8: Electronics

Switching: Driving to Saturation

- What would happen if the base current is so big that the collector current got so big that the voltage drop across R_c wants to exceed V_{cc}?
 - we call this saturated: $V_c V_e$ cannot dip below ~0.2 V
 - even if $I_{\rm b}$ is increased, $I_{\rm c}$ won't budge any more
- The example below is a good logic inverter
 - if V_{cc} = 5 V; R_c = 1 k Ω ; I_c (sat) \approx 5 mA; need I_b > 0.05 mA
 - so $R_b < 20 \text{ k}\Omega$ would put us safely into saturation if $V_{in} = 5V$
 - now 5 V in \rightarrow ~0.2 V out; < 0.6 V in \rightarrow 5 V out

- In the hookup above (emitter follower), $V_{out} = V_{in} 0.6$
 - sounds useless, right?
 - there is no voltage "gain," but there is current gain
 - Imagine we wiggle V_{in} by ΔV : V_{out} wiggles by the same ΔV
 - so the transistor current changes by $\Delta I_e = \Delta V/R$
 - but the base current changes $1/\beta$ times this (much less)
 - so the "wiggler" *thinks* the load is $\Delta V / \Delta I_{\rm b} = \beta \cdot \Delta V / \Delta I_{\rm e} = \beta R$
 - the load therefore is less formidable
- The "buffer" is a way to drive a load without the driver feeling the pain (as much): it's impedance isolation

Lecture 8: Electronics

Improved Zener Regulator

- By adding a transistor to the zener regulator from before, we no longer have to worry as much about the current being pulled away from the zener to the load
 - the base current is small
 - R_{load} effectively looks β times bigger
 - real current supplied through transistor
- Can often find zeners at 5.6 V, 9.6 V, 12.6 V, 15.6 V, etc. because drop from base to emitter is about 0.6 V
 - so transistor-buffered V_{reg} comes out to 5.0, 9.0, etc.
- I_z varies less in this arrangement, so the regulated voltage is steadier

Switching Power Supplies

- Power supplies without transformers
 - lightweight; low cost
 - can be electromagnetically noisy
- Use a DC-to-DC conversion process that relies on flipping a switch on and off, storing energy in an inductor and capacitor
 - regulators were DC-to-DC converters too, but lossy: lose $\Delta P = I \Delta V$ of power for voltage drop of ΔV at current *I*
 - regulators only down-convert, but switchers can also up-convert
 - switchers are reasonably efficient at conversion

Switcher topologies

The FET switch is turned off or on in a pulse-width-modulation (PWM) scheme, the duty cycle of which determines the ratio of V_{out} to V_{in}

from: http://www.maxim-ic.com/appnotes.cfm/appnote_number/4087

Lecture 8: Electronics

UCSD Physics 122

Step-Down Calculations

- If the FET is on for duty cycle, *D* (fraction of time on), and the period is *T*:
 - the average output voltage is $V_{out} = DV_{in}$
 - the average current through the capacitor is zero, the average current through the load (and inductor) is 1/D times the input current
 - under these idealizations, power in = power out

Step-down waveforms

- Shown here is an example of the step-down with the FET duty cycle around 75%
- The average inductor current (dashed) is the current delivered to the load
 - the balance goes to the capacitor
- The ripple (parabolic sections) has peak-to-peak fractional amplitude of T²(1-D)/(8LC)
 - so win by small T, large L & C
 - 10 kHz at 1 mH, 1000 μF yields
 ~0.1% ripple
 - means 10 mV on 10 V

Lecture 8: Electronics

Cable Impedances

- RG58 cable is characterized as 50 Ω cable
 - RG59 is 75 Ω
 - some antenna cable is 300 Ω
- Isn't the cable nearly zero resistance? And shouldn't the length come into play, somehow?
- There is a distinction between resistance and impedance
 - though same units
- Impedances can be real, imaginary, or complex
 - resistors are real: Z = R
 - capacitors and inductors are imaginary: $Z = -i/\omega C$; $Z = i\omega L$
 - mixtures are complex: $Z = R i/\omega C + i\omega L$

Impedances, cont.

- Note that:
 - capacitors become less "resistive" at high frequency
 - inductors become more "resistive" at high frequency
 - bigger capacitors are more transparent
 - bigger inductors are less transparent
 - i (V-1) indicates 90° phase shift between voltage and current
 - after all, V = IZ, so Z = V/I
 - thus if V is sine wave, I is ±cosine for inductor/capacitor
 - and given that one is derivative, one is integral, this makes sense (slide # 3)
 - adding impedances automatically takes care of summation rules: add Z in series
 - capacitance adds as inverse, resistors, inductors straight-up

Impedance Phasor Diagram

- Impedances can be drawn on a complex plane, with pure resistive, inductive, and capacitive impedances represented by the three cardinal arrows
- An arbitrary combination of components may have a complex impedance, which can be broken into real and imaginary parts
- Note that a system's impedance is frequency-dependent

$\underset{input \ L \ C \ Transmission Line Model}{\mathsf{Model}}$

- The cable has a finite capacitance per unit length
 - property of geometry and dielectric separating conductors
 - $C/\ell = 2\pi\epsilon/\ln(b/a)$, where b and a are radii of cylinders
- Also has an inductance per unit length
 - $L/\ell = (\mu/2\pi)\ln(b/a)$
- When a voltage is applied, capacitors charge up
 - thus draw current; propagates down the line near speed of light
- Question: what is the ratio of voltage to current?
 - because this is the characteristic impedance
- Answer: $Z_0 = \operatorname{sqrt}(\omega L/\omega C) = \operatorname{sqrt}(L/C) = (1/2\pi)\operatorname{sqrt}(\mu/\varepsilon)\ln(b/a)$
 - note that Z_0 is frequency-independent

Typical Transmission Lines

- RG58 coax is abundant
 - 30 pF per foot; 75 nH per foot; 50 Ω; v = 0.695c; ~5 ns/m
- RG174 is the thin version
 - same parameters as above, but scaled-down geometry
- RG59
 - used for video, cable TV
 - 21 pF/ft; 118 nH per foot; 75 Ω; v = 0.695c; ~5 ns/m
- twisted pair
 - 110 Ω at 30 turns/ft, AWG 24–28
- PCB (PC-board) trace
 - get 50 Ω if the trace width is 1.84 times the separation from the ground plane (assuming fiberglass PCB with ϵ = 4.5)

Why impedance matters

- For fast signals, get bounces (reflections) at every impedance mismatch
 - reflection amplitude is $(Z_t Z_s)/(Z_t + Z_s)$
 - s and t subscripts represent source and termination impedances
 - sources intending to drive a Z_0 cable have $Z_s = Z_0$
- Consider a long cable shorted at end: insert pulse
 - driving electronics can't know about the termination immediately: must charge up cable as the pulse propagates forward, looking like Z₀ of the cable at first
 - surprise at far end: it's a short! retreat!
 - in effect, negative pulse propagates back, nulling out capacitors (reflection is -1)
 - one round-trip later (10 ns per meter, typically), the driving electronics feels the pain of the short

Impedance matters, continued

- Now other extreme: cable un-terminated: open
 - pulse travels merrily along at first, the driving electronics seeing a Z_0 cable load
 - at the end, the current has nowhere to go, but driver can't know this yet, so keeps loading cable as if it's still Z_0
 - effectively, a positive pulse reflects back, double-charging capacitors (reflection is +1)
 - driver gets word of this one round-trip later (10 ns/m, typically), then must cease to deliver current (cable fully charged)
- The goldilocks case (reflection = 0)
 - if the end of the cable is terminated with resistor with $R = Z_0$, then current is slurped up perfectly with no reflections
 - the driver is not being lied to, and hears no complaints

So Beware!

- If looking at fast (tens of ns domain) signals on scope, be sure to route signal to scope via 50 Ω coax and terminate the scope in 50 Ω
 - if the signal can't drive 50 Ω , then use active probes
- Note that scope probes terminate to 1 M Ω , even though the cables are NOT 1 M Ω cables (no such thing)
 - so scope probes can be very misleading about shapes of fast

signals

Lecture 8: Electronics

UCSD Physics 122

References and Reading

- References:
 - The canonical electronics reference is Horowitz and Hill: The Art of Electronics
 - Also the accompanying lab manual by Hayes and Horowitz is highly valuable (far more practically-oriented)
- Reading
 - Sections 6.1.1, 6.1.2
 - Skim 6.2.2, 6.2.3, 6.2.4
 - Sections 6.3.1, 6.5.1, 6.5.2
 - Skim 6.3.2