

Electronics Overview

Basic Circuits, Power Supplies,
Transistors, Cable Impedance

Basic Circuit Analysis

- What we won't do:
- common electronics-class things: RLC, filters, detailed analysis
- What we will do:
- set out basic relations
- look at a few examples of fundamental importance (mostly resistive circuits)
- look at diodes, voltage regulation, transistors
- discuss impedances (cable, output, etc.)

The Basic Relations

- V is voltage (volts: V); I is current (amps: A); R is resistance (ohms: Ω); C is capacitance (farads: F); L is inductance (henrys: H)
- Ohm's Law: $V=I R ; V=\frac{1}{C} \int I d t ; V=L(d I / d t)$
- Power: $P=I V=V^{2} / R=I^{2} R$
- Resistors and inductors in series add
- Capacitors in parallel add
- Resistors and inductors in parallel, and capacitors in series add according to: $\frac{1}{X_{t t}}=\frac{1}{X_{1}}+\frac{1}{X_{2}}+\frac{1}{X_{3}}+\ldots$

Example: Voltage divider

- Voltage dividers are a classic way to set a voltage
- Works on the principle that all charge flowing through the first resistor goes through the second
- so $\Delta V \propto R$-value
- provided any load at output is negligible: otherwise some current goes there too
- So $V_{\text {out }}=V\left(R_{2} /\left(R_{1}+R_{2}\right)\right)$
- R_{2} here is a variable resistor, or
 potentiometer, or "pot"
- typically three terminals: R_{12} is fixed, tap slides along to vary R_{13} and R_{23}, though $R_{13}+R_{23}=R_{12}$ always

Real Batteries: Output Impedance

- A power supply (battery) is characterized by a voltage (V) and an output impedance (R)
- sometimes called source impedance
- Hooking up to load: $R_{\text {load, }}$, we form a voltage divider, so that the voltage applied by the battery terminal is actually $V_{\text {out }}=V\left(R_{\text {load }} /\left(R+R_{\text {load }}\right)\right)$
- thus the smaller R is, the "stiffer" the power supply
- when $\mathrm{V}_{\text {out }}$ sags with higher load current, we call this "droop"
- Example: If 10.0 V power supply droops by $1 \%(0.1 \mathrm{~V}$) when loaded to 1 Amp (10Ω load):
- internal resistance is 0.1Ω
- called output impedance or source impedance
- may vary with load, though (not a real resistor)

Power Supplies and Regulation

- A power supply typically starts with a transformer
- to knock down the 340 V peak-to-peak (120 V AC) to something reasonable/manageable
- We will be using a center-tap transformer

$-\left(A^{\prime}-B^{\prime}\right)=($ winding ratio $) \times(A-B)$
- when $A>B$, so is $A^{\prime}>B^{\prime}$
- geometry of center tap (CT) guarantees it is midway between A^{\prime} and B^{\prime} (frequently tie this to ground so that $A^{\prime}=-B^{\prime}$)
- note that secondary side floats: no ground reference built-in

Transformer is just wire coiled around metal

- Magnetic field is generated by current in primary coil
- Iron core channels magnetic field through secondary coil
- Secondary Voltage is $V_{2}=\left(N_{2} / N_{1}\right) V_{1}$
- Secondary Current is $I_{2}=\left(N_{1} / N_{2}\right) I_{1}$
- But Power in = Power out
- negligible power lost in transformer
- Works only for AC, not DC

Typical Transformers

AC Voltage or Current and AC Power

$$
- \text { Power } \quad \leftarrow \text { Voltage or Current }
$$

120 VAC is a root-mean-square number: peak-to-peak is 340 Volts!

AC Receptacle

- Receptacles have three holes each
- Lower (rounded) hole is earth ground
- connected to pipes, usually
- green wire
- Larger slot is "neutral"
- for current "return"
- never far from ground
- white wire
- if wired correctly
- Smaller slot is "hot"
- swings to +170 and -170
- black wire
- dangerous one

Diodes

- Diodes are essentially one-way current gates
- Symbolized by:

- Current vs. voltage graphs:

no current flows
current flows

diode
the direction the arrow points in the diode symbol is the direction that current will flow

Diode Makeup

- Diodes are made of semiconductors (usually silicon)
- Essentially a stack of p-doped and n-doped silicon to form a p-n junction
- doping means deliberate impurities that contribute extra electrons (n-doped) or "holes" for electrons (p-doped)
- Transistors are $n-p-n$ or $p-n-p$ arrangements of semiconductors

LEDs: Light-Emitting Diodes

- Main difference is material is more exotic than silicon used in ordinary diodes/ transistors
- typically 2-volt drop instead of 0.6 V drop
- When electron flows through LED, loses energy by emitting a photon of light rather than vibrating lattice (heat)
- LED efficiency is 30% (compare to incandescent bulb at 10\%)
- Must supply current-limiting resistor in series:
- figure on 2 V drop across LED; aim for 1-10 mA of current

Getting DC back out of AC

- AC provides a means for us to distribute electrical power, but most devices actually want DC
- bulbs, toasters, heaters, fans don't care: plug straight in
- sophisticated devices care because they have diodes and transistors that require a certain polarity
- rather than oscillating polarity derived from AC
- this is why battery orientation matters in most electronics
- Use diodes to "rectify" AC signal
- Simplest (half-wave) rectifier uses one diode:

AC source

diode only conducts when input voltage is positive

Doing Better: Full-wave Diode Bridge

- The diode in the rectifying circuit simply prevented the negative swing of voltage from conducting
- but this wastes half the available cycle
- also very irregular (bumpy): far from a "good" DC source
- By using four diodes, you can recover the negative swing:

Full-Wave Dual-Supply

- By grounding the center tap, we have two opposite AC sources
- the diode bridge now presents + and - voltages relative to ground
- each can be separately smoothed/regulated
- cutting out diodes A and D makes a half-wave rectifier

Smoothing out the Bumps

- Still a bumpy ride, but we can smooth this out with a capacitor
- capacitors have capacity for storing charge
- acts like a reservoir to supply current during low spots

How smooth is smooth?

- An RC circuit has a time constant $\tau=R C$
- because $d V / d t=I / C$, and $I=V / R \rightarrow d V / d t=V / R C$
- so V is $V_{0} \exp (\pm t / \tau)$

- Any exponential function starts out with slope $=$ Amplitude/ τ
- So if you want < 10% ripple over 120 Hz (8.3 ms) timescale...
- must have $\tau=R C>83 \mathrm{~ms}$
- if $R=100 \Omega, C>830 \mu \mathrm{~F}$

Regulating the Voltage

- The unregulated, ripply voltage may not be at the value you want
- depends on transformer, etc.
- suppose you want 15.0 V
- You could use a voltage divider to set the voltage
- But it would droop under load
- output impedance $\rightarrow R_{1}| | R_{2}$
- need to have very small R_{1}, R_{2} to make "stiff"
- the divider will draw a lot of current
- perhaps straining the source
- power expended in divider >> power in load
- Not a "real" solution

- Important note: a "big load" means a small resistor value: 1Ω demands more current than $1 \mathrm{M} \Omega$

The Zener Regulator

- Zener diodes break down at some reverse voltage
- can buy at specific breakdown voltages
- as long as some current goes through zener, it'll work
- good for rough regulation
- Conditions for working:

high slope is what makes the
- let's maintain some minimal current, I_{z} through zener a decent voltage regulator zener (say a few mA)
- then $\left(V_{\text {in }}-V_{\text {out }}\right) / R_{1}=I_{z}+V_{\text {out }} / R_{\text {load }}$ sets the requirement on R_{1}
- because presumably all else is known
- if load current increases too much, zener shuts off (node drops below breakdown) and you just have a voltage divider with the load

Voltage Regulator IC

- Can trim down ripply voltage to precise, rock-steady value
- Now things get complicated!
- We are now in the realm of integrated circuits (ICs)
- ICs are whole circuits in small packages
- ICs contain resistors, capacitors, diodes, transistors, etc.

Voltage Regulators

- The most common voltage regulators are the LM78XX (+ voltages) and LM79XX (- voltages)
- XX represents the voltage
- 7815 is +15 ; 7915 is $-15 ; 7805$ is +5 , etc
- typically needs input > 3 volts above output (reg.) voltage
 beware that housing is not always ground
- A versatile regulator is the LM317 (+) or LM337 (-)
- 1.2-37 V output
$-V_{\text {out }}=1.25\left(1+R_{2} / R_{1}\right)+I_{\text {adj }} R_{2}$
- $l_{\text {adj }}$ is small: $50 \mu \mathrm{~A}$
- Up to 1.5 A
- picture at right can go to 25 V
- datasheetcatalog.com for details

Transistors

- Transistors are versatile, highly non-linear devices
- Two frequent modes of operation:
- amplifiers/buffers
- switches
- Two main flavors:
- npn (more common) or pnp, describing doping structure
- Also many varieties:
- bipolar junction transistors (BJTs) such as npn, pnp
- field effect transistors (FETs): n-channel and p-
 channel
- metal-oxide-semiconductor FETs (MOSFETs)
- We'll just hit the essentials of the BJT here
- MOSFET in later lecture

BJT Amplifier Mode

- Central idea is that when in the right regime, the BJT collector-emitter current is proportional to the base

current:

- namely, $I_{\text {ce }}=\beta l_{b}$, where β (sometimes $h_{\text {fe }}$) is typically ~ 100
- In this regime, the base-emitter voltage is $\sim 0.6 \mathrm{~V}$
- below, $I_{\mathrm{b}}=\left(V_{\text {in }}-0.6\right) / R_{\mathrm{b}} ; I_{\mathrm{ce}}=\beta I_{\mathrm{b}}=\beta\left(V_{\text {in }}-0.6\right) / R_{\mathrm{b}}$
- so that $V_{\text {out }}=V_{\text {cc }}-I_{\text {ce }} R_{\mathrm{c}}=V_{\mathrm{cc}}-\beta\left(V_{\text {in }}-0.6\right)\left(R_{\mathrm{c}} / R_{\mathrm{b}}\right)$
- ignoring DC biases, wiggles on $V_{\text {in }}$ become $\beta\left(R_{\mathrm{c}} / R_{\mathrm{b}}\right)$ bigger (and inverted): thus amplified

Switching: Driving to Saturation

- What would happen if the base current is so big that the collector current got so big that the voltage drop across R_{c} wants to exceed V_{cc} ?
- we call this saturated: $V_{\mathrm{c}}-V_{\mathrm{e}}$ cannot dip below $\sim 0.2 \mathrm{~V}$
- even if I_{b} is increased, I_{c} won't budge any more
- The example below is a good logic inverter
- if $V_{\mathrm{cc}}=5 \mathrm{~V} ; R_{\mathrm{c}}=1 \mathrm{k} \Omega$; $I_{\mathrm{c}}(\mathrm{sat}) \approx 5 \mathrm{~mA}$; need $I_{\mathrm{b}}>0.05 \mathrm{~mA}$
- so $\mathrm{R}_{\mathrm{b}}<20 \mathrm{k} \Omega$ would put us safely into saturation if $V_{\text {in }}=5 \mathrm{~V}$
- now 5 V in $\rightarrow \sim 0.2 \mathrm{~V}$ out; $<0.6 \mathrm{~V}$ in $\rightarrow 5 \mathrm{~V}$ out

Transistor Buffer

- In the hookup above (emitter follower), $V_{\text {out }}=V_{\text {in }}-0.6$
- sounds useless, right?
- there is no voltage "gain," but there is current gain
- Imagine we wiggle $V_{\text {in }}$ by ΔV : $V_{\text {out }}$ wiggles by the same ΔV
- so the transistor current changes by $\Delta l_{\mathrm{e}}=\Delta V / R$
- but the base current changes $1 / \beta$ times this (much less)
- so the "wiggler" thinks the load is $\Delta \mathrm{V} / \Delta \mathrm{I}_{\mathrm{b}}=\beta \cdot \Delta \mathrm{V} / \Delta \mathrm{I}_{\mathrm{e}}=\beta R$
- the load therefore is less formidable
- The "buffer" is a way to drive a load without the driver feeling the pain (as much): it's impedance isolation

Improved Zener Regulator

- By adding a transistor to the zener regulator from before, we no longer have to worry as much about the current being pulled away from the zener to the load
- the base current is small
- $\mathrm{R}_{\text {load }}$ effectively looks β times bigger
- real current supplied through transistor
- Can often find zeners at $5.6 \mathrm{~V}, 9.6 \mathrm{~V}, 12.6 \mathrm{~V}$, 15.6 V , etc. because drop from base to emitter is about 0.6 V
- so transistor-buffered $\mathrm{V}_{\text {reg }}$ comes out to 5.0, 9.0, etc.

- I_{z} varies less in this arrangement, so the regulated voltage is steadier

Switching Power Supplies

- Power supplies without transformers
- lightweight; low cost
- can be electromagnetically noisy
- Use a DC-to-DC conversion process that relies on flipping a switch on and off, storing energy in an inductor and capacitor
- regulators were DC-to-DC converters too, but lossy: lose $\Delta P=I \Delta V$ of power for voltage drop of ΔV at current I
- regulators only down-convert, but switchers can also up-convert
- switchers are reasonably efficient at conversion

Switcher topologies

The FET switch is turned off or on in a pulse-width-modulation (PWM) scheme, the duty cycle of which determines the ratio of $V_{\text {out }}$ to $V_{\text {in }}$ from: http://www.maxim-ic.com/appnotes.cfm/appnote_number/4087

Step-Down Calculations

- If the FET is on for duty cycle, D (fraction of time on), and the period is T :
- the average output voltage is $V_{\text {out }}=D V_{\text {in }}$
- the average current through the capacitor is zero, the average current through the load (and inductor) is $1 / D$ times the input current
- under these idealizations, power in = power out

Step-down waveforms

- Shown here is an example of the step-down with the FET duty cycle around 75\%
- The average inductor current (dashed) is the current delivered to the load

Cable Impedances

- RG58 cable is characterized as 50Ω cable
- RG59 is 75Ω
- some antenna cable is 300Ω
- Isn't the cable nearly zero resistance? And shouldn't the length come into play, somehow?
- There is a distinction between resistance and impedance
- though same units
- Impedances can be real, imaginary, or complex
- resistors are real: $Z=R$
- capacitors and inductors are imaginary: $Z=-\mathrm{i} / \omega C ; Z=\mathrm{i} \omega L$
- mixtures are complex: $Z=R-\mathrm{i} / \omega C+\mathrm{i} \omega L$

Impedances, cont.

- Note that:
- capacitors become less "resistive" at high frequency
- inductors become more "resistive" at high frequency
- bigger capacitors are more transparent
- bigger inductors are less transparent
- $\mathrm{i}(\mathrm{V}-1)$ indicates 90° phase shift between voltage and current
- after all, $V=I Z$, so $Z=V / I$
- thus if V is sine wave, I is \pm cosine for inductor/capacitor
- and given that one is derivative, one is integral, this makes sense (slide \# 3)
- adding impedances automatically takes care of summation rules: add Z in series
- capacitance adds as inverse, resistors, inductors straight-up

Impedance Phasor Diagram

- Impedances can be drawn on a complex plane, with pure resistive, inductive, and capacitive impedances represented by the three cardinal arrows
- An arbitrary combination of components may have a complex impedance, which can be broken into real and imaginary parts
- Note that a system's impedance is frequency-dependent

Transmission Line Model

- The cable has a finite capacitance per unit length
- property of geometry and dielectric separating conductors
- $C / \ell=2 \pi \varepsilon / \ln (b / a)$, where b and a are radii of cylinders
- Also has an inductance per unit length
- $L / \ell=(\mu / 2 \pi) \ln (b / a)$
- When a voltage is applied, capacitors charge up
- thus draw current; propagates down the line near speed of light
- Question: what is the ratio of voltage to current?
- because this is the characteristic impedance
- Answer: $Z_{0}=\operatorname{sqrt}(\omega L / \omega C)=\operatorname{sqrt}(L / C)=(1 / 2 \pi) \operatorname{sqrt}(\mu / \varepsilon) \ln (b / a)$
- note that Z_{0} is frequency-independent

Typical Transmission Lines

- RG58 coax is abundant
- 30 pF per foot; 75 nH per foot; $50 \Omega ; v=0.695 \mathrm{c} ; \sim 5 \mathrm{~ns} / \mathrm{m}$
- RG174 is the thin version
- same parameters as above, but scaled-down geometry
- RG59
- used for video, cable TV
- $21 \mathrm{pF} / \mathrm{ft} ; 118 \mathrm{nH}$ per foot; $75 \Omega ; v=0.695 \mathrm{c} ; \sim 5 \mathrm{~ns} / \mathrm{m}$
- twisted pair
- 110Ω at 30 turns/ft, AWG 24-28
- PCB (PC-board) trace
- get 50Ω if the trace width is 1.84 times the separation from the ground plane (assuming fiberglass PCB with $\varepsilon=4.5$)

Why impedance matters

- For fast signals, get bounces (reflections) at every impedance mismatch
- reflection amplitude is $\left(Z_{t}-Z_{s}\right) /\left(Z_{t}+Z_{s}\right)$
- s and t subscripts represent source and termination impedances
- sources intending to drive a Z_{0} cable have $Z_{s}=Z_{0}$
- Consider a long cable shorted at end: insert pulse
- driving electronics can't know about the termination immediately: must charge up cable as the pulse propagates forward, looking like Z_{0} of the cable at first
- surprise at far end: it's a short! retreat!
- in effect, negative pulse propagates back, nulling out capacitors (reflection is -1)
- one round-trip later (10 ns per meter, typically), the driving electronics feels the pain of the short

Impedance matters, continued

- Now other extreme: cable un-terminated: open
- pulse travels merrily along at first, the driving electronics seeing a Z_{0} cable load
- at the end, the current has nowhere to go, but driver can't know this yet, so keeps loading cable as if it's still Z_{0}
- effectively, a positive pulse reflects back, double-charging capacitors (reflection is +1)
- driver gets word of this one round-trip later ($10 \mathrm{~ns} / \mathrm{m}$, typically), then must cease to deliver current (cable fully charged)
- The goldilocks case (reflection = 0)
- if the end of the cable is terminated with resistor with $R=Z_{0}$, then current is slurped up perfectly with no reflections
- the driver is not being lied to, and hears no complaints

So Beware!

- If looking at fast (tens of ns domain) signals on scope, be sure to route signal to scope via 50Ω coax and terminate the scope in 50Ω
- if the signal can't drive 50Ω, then use active probes
- Note that scope probes terminate to $1 \mathrm{M} \Omega$, even though the cables are NOT $1 \mathrm{M} \Omega$ cables (no such thing)
- so scope probes can be very misleading about shapes of fast signals

References and Reading

- References:
- The canonical electronics reference is Horowitz and Hill: The Art of Electronics
- Also the accompanying lab manual by Hayes and Horowitz is highly valuable (far more practically-oriented)
- Reading
- Sections 6.1.1, 6.1.2
- Skim 6.2.2, 6.2.3, 6.2.4
- Sections 6.3.1, 6.5.1, 6.5.2
- Skim 6.3.2

