

Thermal Design

Heat Transfer

Temperature Measurement
The prevalence of the number 5.7

Why Care about Thermal?

- Scientific equipment often needs temperature control
- especially in precision measurement
- Want to calculate thermal energy requirements
- how much energy to change temperature?
- how much power to maintain temperature?
- Want to calculate thermal time constants
- how long will it take to change the temperature?
- Want to understand relative importance of radiation, convection, conduction
- which dominates?
- how much can we limit/exaggerate a particular process?

Chief Thermal Properties

- Thermal Conductivity
- κ measured in $\mathrm{W} / \mathrm{m} / \mathrm{K}$
- heat flow (in W) is

$$
P=\kappa \cdot \Delta T \cdot A / t
$$

- note that heat flow increases with increasing ΔT, increasing surface area, and decreasing thickness (very intuitive)
- Specific Heat Capacity
- c_{p} measured in $\mathrm{J} / \mathrm{kg} / \mathrm{K}$
- energy locked up in heat is:

$$
E=c_{p} \cdot \Delta T \cdot m
$$

- energy stored proportional to ΔT, and mass (intuitive)
- Emisivity, ε
- power radiated is $P=\varepsilon A \sigma T^{4}$

Thermal Conductivity of Materials

- (copied from materials lecture)

Material	$\kappa\left(\mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}\right)$	comments
Silver	422	room T metals feel cold
Copper	391	great for pulling away heat
Gold	295	
Aluminum	205	
Stainless Steel	$10-25$	why cookware uses S.S.
Glass, Concrete,Wood	$0.5-3$	buildings
Many Plastics	~ 0.4	room T plastics feel warm
G-10 fiberglass	0.29	strongest insulator choice
Stagnant Air	0.024	but usually moving...
Styrofoam	$0.01-0.03$	can be better than air!

Conduction: Heated Box

- A $1 \mathrm{~m} \times 1 \mathrm{~m} \times 2.5 \mathrm{~m}$ ice-fishing hut stands in the $-10^{\circ} \mathrm{C}$ cold with 2.5 cm walls of wood
- $A=12 \mathrm{~m}^{2}$
- $t=0.025 \mathrm{~m}$
- $\kappa \approx 1 \mathrm{~W} / \mathrm{m} / \mathrm{K}$
- To keep this hut at $20^{\circ} \mathrm{C}$ would require

$$
P=\kappa \cdot \Delta T \cdot A / t=(1.0)(30)(12) /(0.025)=14,400 \mathrm{~W}
$$

- Outrageous!
- Replace wood with insulation: $\kappa=0.02 ; t=0.025$

$$
P=\kappa \cdot \Delta T \cdot A / t=(0.02)(30)(12) /(0.025)=288 \mathrm{~W}
$$

- This, we can do for less than $\$ 40$ at Target
- First example unfair
- air won't carry heat away this fast: more on this later

A Cold Finger

- Imagine a plug of aluminum connecting the inside to the outside
- how much will it change the story?
- cylindrical shape, length t , radius R
- $\kappa=205 \mathrm{~W} / \mathrm{m} / \mathrm{K}$
- just based on conduction alone, since difference in thermal conductivity is a factor of 10,000, the cold finger is as important as the whole box if it's area is as big as $1 / 10,000$ the area of the box.
- this corresponds to a radius of 2 mm !!!
- So a cold finger can "short-circuit" the deliberate attempts at insulation
- provided that heat can couple to it effectively enough: this will often limit the damage

R-value of insulation

- In a hardware store, you'll find insulation tagged with an "R-value"
- thermal resistance R-value is t / κ
- R-value is usually seen in imperial units: $\mathrm{ft}^{2} \cdot F \cdot h r / B t u$
- Conversion factor is 5.67:
- R-value of 0.025 -thick insulation of $\kappa=0.02 \mathrm{~W} / \mathrm{m} / \mathrm{K}$ is:

$$
R=5.67 \times t / \kappa=5.67 \times 0.025 / 0.02=7.1
$$

- Can insert Home-Depot $\mathrm{R}=5$ insulation into formula:

$$
P=5.67 \times A \cdot \Delta T / R
$$

- so for our hut with $R=5: P \approx 5.67 \times(12)(30) / 5=408 \mathrm{~W}$
- note our earlier insulation example had $R=7.1$ instead of 5 , in which case $P=288 \mathrm{~W}$ (check for yourself!)

Wikipedia on R-values:

- Note that these examples use the non-SI definition and are per inch. Vacuum insulated panel has the highest R-value of (approximately 45 in English units) for flat, Aerogel has the next highest R-value 10, followed by isocyanurate and phenolic foam insulations with, 8.3 and 7 , respectively. They are followed closely by polyurethane and polystyrene insulation at roughly $\mathrm{R}-6$ and $\mathrm{R}-5$. Loose cellulose, fiberglass both blown and in batts, and rock wool both blown and in batts all possess an R-value of roughly 3. Straw bales perform at about $\mathrm{R}-1.45$. Snow is roughly $\mathrm{R}-1$.
- Absolutely still air has an R-value of about 5 but this has little practical use: Spaces of one centimeter or greater will allow air to circulate, convecting heat and greatly reducing the insulating value to roughly $\mathrm{R}-1$

Convective Heat Exchange

- Air (or any fluid) can pull away heat by physically transporting it
- really conduction into fluid accompanied by motion of fluid
- full, rigorous, treatment beyond scope of this class
- General behavior:

$$
\text { power convected }=P=h \cdot \Delta T \cdot A
$$

- A is area, ΔT is temperature difference between surface and bath
- h is the convection coefficient, units: W/K/m²
- still air has $h \approx 2-5 \mathrm{~W} / \mathrm{K} / \mathrm{m}^{2}$
- higher when ΔT is higher: self-driven convective cells
- note that $h=5.67$ is equivalent to $R=1$
- gentle breeze may have $h \approx 5-10 \mathrm{~W} / \mathrm{K} / \mathrm{m}^{2}$
- forced air may be several times larger ($h \approx 10-50$)

Convection Examples

- Standing unclothed in a $20^{\circ} \mathrm{C}$ light breeze

$$
\begin{aligned}
& -h \approx 5 \mathrm{~W} / \mathrm{K} / \mathrm{m}^{2} \\
& -\Delta T=17^{\circ} \mathrm{C} \\
& -A \approx 1 \mathrm{~m}^{2} \\
& -P \approx(5)(17)(1)=85 \mathrm{~W}
\end{aligned}
$$

- Our hut from before:
$-h \approx 5 \mathrm{~W} / \mathrm{K} / \mathrm{m}^{2}$
$-\Delta T=30^{\circ} \mathrm{C}$ (if the skin is at the hot temperature)
$-A \approx 12 \mathrm{~m}^{2}$
$-P \approx(5)(30)(12)=1800 \mathrm{~W}$

Radiative Heat Exchange

- The Stephan-Boltzmann law tells us:
$-P=\varepsilon A \sigma\left(T_{h}{ }^{4}-T_{c}{ }^{4}\right)$
- The Stephan-Boltzmann constant, $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}^{4}$
- in thermal equilibrium $\left(T_{h}=T_{c}\right)$, there is radiative balance, and $P=0$
- the emissivity ranges from 0 (shiny) to 1 (black)
- "black" in the thermal infrared band ($\lambda \approx 10 \mu \mathrm{~m}$) might not be intuitive
- your skin is nearly black ($\varepsilon \approx 0.8$)
- plastics/organic stuff is nearly black ($\varepsilon \approx 0.8-1.0$)
- even white paint is black in the thermal infrared
- metals are almost the only exception
- for small ΔT around $T, P \approx 4 \varepsilon A \sigma T^{3} \Delta T=\left(4 \varepsilon \sigma T^{3}\right) \cdot A \cdot \Delta T$
- which looks like convection, with $h=4 \varepsilon \sigma T^{3}$
- for room temperature, $h \approx 5.7 \varepsilon \mathrm{~W} / \mathrm{K} / \mathrm{m}^{2}$, so similar in magnitude to convection

Radiative Examples

- Standing unclothed in room with $-273^{\circ} \mathrm{C}$ walls
- and assume emissivity is 0.8 for skin
- $A \approx 1 \mathrm{~m}^{2}$
$-\Delta T=310 \mathrm{~K}$
- $P \approx(0.8)(1)\left(5.67 \times 10^{-8}\right)\left(310^{4}\right)=419 \mathrm{~W}$ (burr)
- Now bring walls to $20^{\circ} \mathrm{C}$
$-\Delta T=17^{\circ} \mathrm{C}$
- $P \approx(0.8)(1)\left(5.67 \times 10^{-8}\right)\left(310^{4}-293^{4}\right)=84 \mathrm{~W}$
- pretty similar to convection example
- note that we brought our cold surface to 94.5% the absolute temperature of the warm surface, and only reduced the radiation by a factor of 5 (not a factor of 18): the fourth power makes this highly nonlinear

Combined Problems

- Two-layer insulation
- must compute temperature at interface
- Conduction plus Convection
- skin temperature must be solved
- Conduction plus Radiation
- skin temperature must be solved
- The whole enchilada
- conduction, convection, radiation

Two-Layer insulation

- Let's take our ice-fishing hut and add insulation instead of replacing the wood with insulation
- each still has thickness 0.025 m ; and surface area $12 \mathrm{~m}^{2}$
- Now have three temperatures: $T_{\text {in }}=20^{\circ}, T_{\text {mid, }} T_{\text {out }}=-10^{\circ}$
- Flow through first is: $P_{1}=\kappa_{1} \cdot\left(T_{\text {in }}-T_{\text {mid }}\right) \cdot A_{1} / t_{1}$
- Flow through second is: $P_{2}=\kappa_{2} \cdot\left(T_{\text {mid }}-T_{\text {out }}\right) \cdot A_{2} / t_{2}$
- In thermal equilibrium, must have $P_{1}=P_{2}$
- else energy is building up or coming from nowhere
- We know everything but $T_{\text {mid }}$, which we easily solve for:

$$
T_{\text {mid }}\left(\kappa_{1} A_{1} / t_{1}+\kappa_{2} A_{2} / t_{2}\right)=\kappa_{1} A_{1} T_{\text {in }} / t_{1}+\kappa_{2} A_{2} T_{\text {out }} / t_{2}
$$

- find $T_{\text {mid }}=-9.412$ or $T_{\text {mid }}=19.412$ depending on which is interior or exterior
- heat flow is 282 W (compare to 288 W before: wood hardly matters)

Conduction plus Convection

- Let's take our hut with just wood, but considering convection
- The skin won't necessarily be at $\mathrm{T}_{\text {out }}$
- Again, thermal equilibrium demands that power conducted through wall equals power wafted away in air
$-P=h \cdot\left(T_{\text {skin }}-T_{\text {out }}\right) \cdot A=\kappa \cdot\left(T_{\text {in }}-T_{\text {skin }}\right) \cdot A / t$
- for which we find $T_{\text {skin }}=\left(\kappa T_{\text {in }} / t+h T_{\text {out }}\right) /(h+\kappa / t)=16.7^{\circ} \mathrm{C}$
- so the skin is hot
- $P=(5)(26.7)(12) \approx 1600 \mathrm{~W}$
- So a space heater actually could handle this (no radiation)
- lesson: air could not carry heat away fast enough, so skin warms up until it can carry enough heat away-at the same time reducing ΔT across wood
- h may tend higher due to self-induced airflow with large ΔT
- also, a breeze/wind would help cool it off

Convection plus Radiation

- How warm should a room be to stand comfortably with no clothes?
- assume you can put out $P=100 \mathrm{~W}$ metabolic power
- $2000 \mathrm{kcal} /$ day $=8,368,000 \mathrm{~J}$ in $86400 \mathrm{sec} \approx 100 \mathrm{~W}$
$-P=h \cdot\left(T_{\text {skin }}-T_{\text {out }}\right) \cdot A+\varepsilon A \sigma\left(T_{\text {skin }}{ }^{4}-T_{\text {out }}{ }^{4}\right) \approx\left(h A+4 \varepsilon A \sigma T^{3}\right) \Delta T$
- with emissivity $=0.8, T=293 \mathrm{~K}$
$-100=((5)(1)+4.56) \Delta T$
$-\Delta T=10.5^{\circ}$
- so the room is about $310-10.5=299.5 \mathrm{~K}=26.5^{\circ} \mathrm{C}=80^{\circ} \mathrm{F}$
- iterating (using $T=299.5$); $4.56 \rightarrow 4.87 ; \Delta T \rightarrow 10.1^{\circ}$
- assumes skin is full internal body temperature
- some conduction in skin reduces skin temperature
- so could tolerate slightly cooler

The whole enchilada

- Let's take a cubic box with a heat source inside and consider all heat transfers
- $P=1 \mathrm{~W}$ internal source
- inside length $=10 \mathrm{~cm}$
- thickness $=2.5 \mathrm{~cm}$
- R-value = 5
- so $5.67 \times t / \kappa=5 \rightarrow \kappa=0.028 \mathrm{~W} / \mathrm{m} / \mathrm{K}$
- effective conductive area is 12.5 cm cube $\rightarrow A_{c}=0.09375$ m^{2}
- external (radiative, convective) area is 15 cm cube $\rightarrow A_{\text {ext }}$ $=0.135 \mathrm{~m}^{2}$
- assume $h=5 \mathrm{~W} / \mathrm{K} / \mathrm{m}^{2}, \varepsilon=0.8, T_{\text {ext }}=293 \mathrm{~K}$
- assume the air inside is thoroughly mixed (perhaps 1 W source is a fan!)

The enchilada calculation

- power generated = power conducted = power convected plus power radiated away

$$
P=\kappa \cdot\left(T_{\text {in }}-T_{\text {skin }}\right) \cdot A_{d} / t=\left(h A_{\text {ext }}+4 \varepsilon A_{\text {ext }} \sigma T^{3}\right) \cdot\left(T_{\text {skin }}-T_{\text {ext }}\right)
$$

- first get $T_{\text {skin }}$ from convective/radiative piece
$-T_{\text {skin }}=T_{\text {ext }}+P /\left(h A_{\text {ext }}+4 \varepsilon A_{\text {ext }} \sigma T^{3}\right)=20^{\circ}+1.0 /(0.675+0.617)$
$-T_{\text {skin }}=20.8^{\circ}$ (barely above ambient)
- now the ΔT across the insulation is $P \cdot t /\left(A_{c} \cdot \kappa\right)=9.5^{\circ}$
- so $T_{\text {in }}=30.3^{\circ}$
- Notice a few things:
- radiation and convection nearly equal influence (0.617 vs. 0.675)
- shutting off either would result in small (but measurable) change

Timescales

- So far we've looked at steady-state equilibrium situations
- How long will it take to "charge-up" the system?
- Timescale given by heat capacity times temperature change divided by power
$-\tau \approx c_{p} \cdot m \cdot \Delta T / P$
- For ballpark, can use $c_{p} \approx 1000 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$ for just about anything
- so the box from before would be 2.34 kg if it had the density of water; let's say 0.5 kg in truth
- average charge is half the total ΔT, so about 5°
- total energy is (1000)(0.5)(5) = 2500 J
- at 1 W , this has a 40 minute timescale

Heating a lump by conduction

- Heating food from the outside, one relies entirely on thermal conduction/diffusion to carry heat in
- Relevant parameters are:
- thermal conductivity, κ (how fast does heat move) ($\mathrm{W} / \mathrm{m} / \mathrm{K}$)
- heat capacity, c_{p} (how much heat does it hold) (J/kg/K)
- mass, m (how much stuff is there) (kg)
- size, R-like a radius (how far does heat have to travel) (m)
- Just working off units, derive a timescale:
$-\tau \approx\left(c_{p} / \kappa\right)(m / R) \approx 4\left(c_{p} / \kappa\right) \rho R^{2}$
- where ρ is density, in $\mathrm{kg} / \mathrm{m}^{3}: \rho \approx m /\left((4 / 3) \pi R^{3}\right) \approx m / 4 R^{3}$
- faster if: c_{p} is small, K is large, R is small (these make sense)
- for typical food values, $\tau \approx 6$ minutes $\times(R / 1 \mathrm{~cm})^{2}$
- egg takes ten minutes, turkey takes 5 hours

Lab Experiment

- We'll build boxes with a heat load inside to test the ideas here
- In principle, we can:
- measure the thermal conductivity of the insulation
- see the impact of emissivity changes
- see the impact of enhanced convection
- look for thermal gradients in the absence of circulation
- look at the impact of geometry on thermal state
- see how serious heat leaks can be
- Nominal box:
- 10 cm side, 1 -inch thick, about 1.5 W (with fan)

Lab Experiment, cont.

- We'll use power resistors rated at 5 W to generate the heat
- 25Ω nominal
- $P=V^{2} / R$
- At 5 V , nominal value is 1 W
- can go up to 11 V with these resistors to get 5 W
- a 12Ω version puts us a bit over 2 W at 5 V
- Fans to circulate
- small fans operating at 5 V (and about 0.5 W) will keep the air moving
- Aluminum foil tape for radiation control
- several varieties available
- Standard building insulation

Lab Experimental Suite

experiment	R	int. airflow	ext. airflow	int. foil	ext. foil	geom.
A (control)	25Ω	1 fan	none	no	no	10 cm cube
B (ext. convec)	25Ω	1 fan	fan	no	no	10 cm cube
C (ext. radiation)	25Ω	1 fan	none	no	yes	10 cm cube
D (ext. conv/rad)	25Ω	1 fan	fan	no	yes	10 cm cube
E (gradients)	25Ω	none	none	no	no	10 cm cube
F (int. radiation)	25Ω	1 fan	none	yes	no	10 cm cube
G (radiation)	25Ω	1 fan	none	yes	yes	10 cm cube
H (more power)	12Ω	1 fan	none	no	no	10 cm cube
I (larger area)	12Ω	2 fans	none	no	no	17.5 cm cube
J (area and thick.)	12Ω	2 fans	none	no	no	17.5 cm cube

Random Notes

- Rig fan and resistor in parallel, running off 5 V
- fan can accept range: 4.5-5.5 V
- if you want independent control, don't rig together
- Use power supply current reading (plus voltage) to ascertain power ($P=I V$) being delivered into box
- Make sure all RTDs read same thing on block of thermally stabilized chunk of metal
- account for any offset in analysis
- Don't let foil extend to outside as a cold finger
- Make sure you have no air gaps: tape inside and out of seams
- but need to leave top accessible
- nice to tape fan to top (avoid heat buildup here)
- can hang resistor, RTD from top as well (easy to assemble)

Random Notes, continued

- Measure temp. every 15 seconds, initially
- tie white leads of RTDs to common DVM all together
- label red lead so you know where it goes
- After equilibrium is reached, measure skin temperatures
- hold in place with spare foam (not finger or thermal conductor!)
- We have limited RTDs, so 3-4 per group will be standard
- locate inside RTD in fan exhaust, so representative
- use external RTD for ambient, skin (double duty)
- some experiments will want more RTDs (gradients)
- Once equilibrated, go to configuration B
- turn on external fan, coat with foil, poke a hole, cold finger

Random Notes, continued

- Send your data points to me via e-mail so I can present the amalgam of results to the class
- use format: $\Delta t T_{1} T_{2} T_{3}$ etc.
- example:
165.027 .631 .232 .224 .8
- include a description of what each column represents
- Also include basic setup and changes in e-mail so I know what I'm plotting
- Also include in the message temperatures you measure only once, or occasionally (like skin temp.)
- I'll make the data available for all to access for the writeups

Example Series

Temperature differences

References and Assignment

- Useful text:
- Introduction to Heat Transfer: Incropera \& DeWitt
- Reading in text:
- Chapter 8 (7 in 3rd ed.) reading assignment: check web page for details

Thermal Building Design

- You can get R-values for common construction materials online
- see http://www.coloradoenergy.org/procorner/stuff/r-values.htm
- Recall that $R=5.67 \times t / \kappa$
- so power, $P=5.67 A \Delta T / R$
- Composite structures (like a wall) get a net R-value
- some parts have insulation, some parts just studs
- if we have two areas, A_{1} with R_{1} and A_{2} with R_{2}, total power is

$$
P=5.67 A_{1} \Delta T / R_{1}+5.67 A_{2} \Delta T / R_{2}
$$

- so we can define net R so that it applies to $A_{\text {tot }}=A_{1}+A_{2}$
$-1 / R_{\text {tot }}=\left(A_{1} / A_{\text {tot }}\right) / R_{1}+\left(A_{2} / A_{\text {tot }}\right) / R_{2}$
- in example on web site, studs take up 15%, rest of wall 85%
- $P=5.67 A_{\text {tot }} \Delta T / R_{\text {tot }}$

Handling External Flow as R-value

- On the materials site, they assign R-values to the air "layer" up against the walls
- outside skin $R=0.17$
- inside skin $R=0.68$
- This accounts for both convection and radiation. How?
- recall that power through the walls has to equal the power convected and radiated

$$
\begin{aligned}
P & =5.67 A\left(T_{\text {in }}-T_{\text {skin }}\right) / R=h_{\text {conn }} A\left(T_{\text {skin }}-T_{\text {out }}\right)+h_{\text {rad }} A\left(T_{\text {skin }}-T_{\text {out }}\right) \\
P & =5.67 \mathrm{~A}\left(T_{\text {in }}-T_{\text {skin }}\right) / R=h_{\text {eff }} A\left(T_{\text {skin }}-T_{\text {out }}\right) \\
- & \text { where } h_{\text {rad }} \approx 4 \sigma \varepsilon T^{3}, \text { and } h_{\text {eff }}=h_{\text {conv }}+h_{\text {rad }}
\end{aligned}
$$

- We can solve this for $T_{\text {skin }}$, to find

$$
T_{\text {skin }}=\left(5.67 T_{\text {in }} / R+h_{\text {eff }} T_{\text {out }}\right) /\left(5.67 / R+h_{\text {eff }}\right)
$$

Putting Together

- Inserting the expression for $T_{\text {skin }}$ into the conduction piece, we get:

$$
P=5.67 A\left(T_{\text {in }}-T_{\text {skin }}\right) / R=5.67 A\left(T_{\text {in }}-\left(5.67 T_{\text {in }} / R+h_{\text {eff }} T_{\text {out }}\right) /\left(5.67 / R+h_{\text {eff }}\right) / R\right.
$$

- multiply the solitary $T_{\text {in }}$ by $\left(5.67 / R+h_{\text {eff }}\right) /\left(5.67 / R+h_{\text {eff }}\right)$
- $5.67 T_{\text {in }} / R$ term cancels out
$P=5.67 A\left(\left(h_{\text {eff }} T_{\text {in }}-h_{\text {eff }} T_{\text {out }}\right) /\left(5.67 / R+h_{\text {eff }}\right)\right) / R$
$P=5.67 A\left(T_{\text {in }}-T_{\text {out }}\right) \times h_{\text {eff }} /\left(5.67+h_{\text {eff }} R\right)$
- which now looks like a standard conduction relation between inside and outside temperatures, with an effective R :
$R_{\text {eff }}=R+5.67 / h_{\text {eff }}$
- The effective R is the R-value of the original wall plus a piece from the air that looks like $5.67 / h_{\text {eff }}$
- the site has interior air layer $R_{\text {eff }}=0.68$, or $h_{\text {eff }}=8.3$, which is appropriate for radiation plus convection
- for exterior, they use $R_{\text {eff }}=0.17$, or $h_{\text {eff }}=33$, representing windy conditions

A model house

- Ignoring the floor, let's compute the heat load to keep a house some ΔT relative to outside
- useful to formulate $G=P / \Delta T$ in W / K as property of house
- Assume approx $40 \times 40 \mathrm{ft}$ floorplan ($1600 \mathrm{ft}^{2}$)
- 8 feet tall, 20% windows on wall
- Wall: $100 \mathrm{~m}^{2}$, windows: $20 \mathrm{~m}^{2}$, ceiling: $150 \mathrm{~m}^{2}$, roof $180 \mathrm{~m}^{2}$
- Can assess for insulation or not, different window choices, etc.
- $G_{\text {window }}=125,57,29$ for single, double, or deluxe window
- $G_{\text {wall }}=142,47$ for no insul, insul
$-G_{\text {ceil }}=428,78$ for no insul, insul
$-G_{\text {roof }}=428,90$ for no insul, insul

Dealing with the Ceiling

- The $\mathrm{G}_{\text {ceil }}$ and $\mathrm{G}_{\text {roof }}$ require interpretation, since the ΔT across these interfaces is not the full ΔT between inside and outside
- there is a $T_{\text {attic }}$ in between
- but we know that the heat flow through the ceiling must equal the heat flow through the roof, in equilibrium
- so $G_{\text {ceil }}\left(T_{\text {in }}-T_{\text {attic }}\right)=G_{\text {roof }}\left(T_{\text {attic }}-T_{\text {out }}\right)$
- then $T_{\text {attic }}=\left(G_{\text {ceil }} T_{\text {in }}+G_{\text {roof }} T_{\text {out }}\right) /\left(G_{\text {ceil }}+G_{\text {roof }}\right)$
- so that $\mathrm{G}_{\text {ceil }}\left(\mathrm{T}_{\text {in }}-\mathrm{T}_{\text {attic }}\right)=\mathrm{G}_{\text {up }}\left(\mathrm{T}_{\text {in }}-\mathrm{T}_{\text {out }}\right)$
- where $G_{\text {up }}=G_{\text {ceil }} G_{\text {roof }} /\left(G_{\text {ceil }}+G_{\text {roof }}\right)$, in effect acting like a parallel combination
- So $\mathrm{G}_{\text {up }}$ evaluates to:
$-G_{u p}=214,74,66,42$ for no/no, ceil/no, no/roof, ceil/roof insulation combinations

All Together Now

- The total power required to stabilize the house is then

$$
P_{\text {tot }}=G_{\text {tot }} \Delta T \text {, where } G_{\text {tot }}=G_{\text {window }}+G_{\text {wall }}+G_{\text {up }}
$$

- For a completely uninsulated house:
- $\mathrm{G}_{\text {tot }}=481 \mathrm{~W} / \mathrm{K}$
- requires 7.2 kW to maintain $\Delta \mathrm{T}=15^{\circ} \mathrm{C}$
- over 5 months (153 days), this is 26493 kWh , costing \$2649 at \$0.10/kWh
- Completely insulated (walls, ceiling, roof, best windows), get $\mathrm{G}_{\text {tot }}=118 \mathrm{~W} / \mathrm{K}$
- four times better!
- save \$2000 per cold season (and also save in warm season)

