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Why we need to know about materials

e Stuff is made of stuff
— what should your part be made of?
— what does it have to do?
— how thick should you make it
* The properties we usually care about are:
— stiffness
— electrical conductivity
— thermal conductivity
— heat capacity
— coefficient of thermal expansion
— density
— hardness, damage potential
— machine-ability
— surface condition
— suitability for coating, plating, etc.



Electrical Resistivity

Expressed as p in €2:m
— resistance = p-L/A

 where L is length and A is area

— conductivity is 1/p

Material p (x10°° Q-m) | comments

Silver 0.0147 $$

Gold 0.0219 559

Copper 0.0382 cheapest good conductor
Aluminum 0.047

Stainless Steel 0.06-0.12




Thermal Conductivity

* Expressedaskin W mtK?

— power transmitted = k-A-AT/t,
 where Ais area, t is thickness, and AT is the temperature across the material

Material K (WmTK") | comments

Silver 422 room T metals feel cold
Copper 391 great for pulling away heat
Gold 295

Aluminum 205

Stainless Steel 10-25 why cookware uses S.S.
Glass, Concrete,Wood 0.5-3 buildings

Many Plastics ~0.4 room T plastics feel warm
G-10 fiberglass 0.29 strongest insulator choice
Stagnant Air 0.024 but usually moving...
Styrofoam 0.01-0.03 can be better than air!




Specific Heat (heat capacity)

* Expressedasc,in)kg*K*
— energy stored = c,\m-AT
 where mis mass and AT is the temperature change

Material c, (J kg" K1) | comments

water 4184 powerhouse heat capacitor
alcohol (and most liquids) 2500

wood, air, aluminum, plastic 1000 most things!

brass, copper, steel 400

platinum 130




Coefficient of Thermal Expansion

Expressed as o = OL/L per degree K

— length contraction = a-AT-L,
* where AT is the temperature change, and L is length of material

Material o (x10° K1) | comments

Most Plastics ~100

Aluminum 24

Copper 20

Steel 15

G-10 Fiberglass 9

Wood 3

Normal Glass 3-5

Invar (Nickel/lron alloy) 1.5 best structural choice
Fused Silica Glass 0.6




Density

* Expressedas p=m/Vinkgm3

Material o (kg m3) comments

Platinum 21452

Gold 19320 tell this to Indiana Jones
Lead 11349

Copper, Brass, Steels 7500-9200

Aluminum Alloys 2700-2900

Glass 2600 glass and aluminum v. similar
G-10 Fiberglass 1800

Water 1000

Air at STP 1.3
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Stress and Strain

Everything is a spring!
— nothing is infinitely rigid
You know Hooke’s Law:
F=k-OL
— where k is the spring constant (N/m), oL is length change
— for a given material, k should be proportional to A/L
— say k = E-A/L, where E is some elastic constant of the material

Now divide by cross-sectional area
F/A=0=k-OL/A=E-¢ o=E-¢
— where ¢gis OL/L: the fractional change in length
This is the stress-strain law for materials
— ois the stress, and has units of pressure
— ¢gis the strain, and is unitless



Stress and Strain, lllustrated

A bar of material, with a force F
applied, will change its size by:

OL/L = € = o/E = F/AE N e /
Strain is a very useful number, being
dimensionless

Example: Standing on an aluminum rod: A

— E=70%10° N-m2 (Pa) | fe— 5L
— say areais 1 cm? = 0.0001 m?

— saylengthis1m o=F/A

— weightis 700 N

— 0=7x108 N/m? e = OL/L

— £=10%— 6L =100 um

— compression is width of human hair

o=E-¢



Elastic Modulus

* Basically like a spring constant

— for a hunk of material, k = E(A/L), but E is the only part of
this that is intrinsic to the material: the rest is geometry

* Units are N/m?, or a pressure (Pascals)

Material E (GPa)
Tungsten 350
Steel 190-210
Brass, Bronze, Copper 100-120
Aluminum 70
Glass 50-80
G-10 fiberglass 16
Wood 6-15
most plastics 2-3




Bending Beams

/ tension: stretched

neutral “plane”

compression

A bent beam has a stretched outer surface, a compressed inner
surface, and a neutral surface somewhere between

If the neutral length is L, and neutral radius is R, then the strain at
some distance, y, from the neutral surfaceis (R + y)/R - 1

— €=y/R

— because arclength for same A@ is proportional to radius

— note L =RAO

So stress at y is o = Ey/R



IS zero

In the Moment

e Since each mass/volume element is still, the net force

— Each unit pulls on its neighbor with same force its neighbor
pulls on it, and on down the line

— Thus there is no net moment (torque) on a mass element,
and thus on the whole beam

» otherwise it would rotate: angular momentum would change
— But something is exerting the bending influence

A

Bending Moments
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What's it take to bend it?

At each infinitesimal cross section in rod with coordinates
(x, y) and area dA = dxdy:

— dF = odA = (Ey/R)dA

— where y measures the distance from the neutral surface
— the moment (torque) at the cross section is just dM = y-dF
— so dM = Ey*dA/R

— integrating over cross section:

E El
M: p— 2 —
/Ry drdy = 4

— where we have defined the “moment of inertia” as

I = /y2dwdy



Energy in the bent beam

We know the force on each volume element:

— dF = :dA = E-e-dA = (Ey/R)dA
We know that the length changes by OL = edz = o-dz/E
So energy is: __~ z-direction

— dW =dF-0L = dF-e-dz = E-&-dA x e-dz = E(y/R)*dxdydz
Integrate this throughout volume

E FEIL
W =— /y2dazdydz = 2

R2

So W =M(L/R) = MO < &

— where 0 is the angle through which the beam is bent



Calculating beam deflection

* We start by making a free-body diagram so that all forces
and torques are balanced

— otherwise the beam would fly/rotate off in some direction

ext

2,000 s/fi

g 4ft |¢ 6ft

4000bs 3,000 bs

¥
2,000 bs

— In this case, the wall exerts forces and moments on the beam
(though A,=0)

— This example has three point masses and one distributed load

Lecture 3: Materials

UCSD Physics 122

15



Tallying the forces/moments

2,000 bs/fi

p 4ft |¢ 6f

A)’ Y Y
4000Ibs 3,000 bs 2000 Ihs

+ A,=0; A, = 21,000 Ibs

+ M., = (4)(4000) + (8)(3000) + (14)(2000) + (11)(6)
(2000) = 200,000 ft-Ibs

— last term is integral:

XTo 27 T2
M:/ A\zdr = [,\%} :X'“;xz (2 —z1) = A(z) Az
T I

— where A is the force per unit length (2000 Ibs/ft)
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s ome-uA Simpler Example
— M. =A<z>Az = A(L/2)L = '> AL?
RRNARERRRNARNRRRN

force per unit length = A; total force = mg = AL

* A cantilever beam under its own weight (or a uniform weight)
— F,and M

— At any point, distance z along the beam, we can sum the moments about
this point and find:

have been defined above to establish force/moment balance

ext

L
Moy = Mexs — 2Fy + / Mz —2')dz = %ALQ — ALz + ALz — %)\L2 =0
0

— validating that we have no net moment about any point, and thus the
beam will not spin up on its own!



What’s the deflection?

F,=mg=AL

— M. =A<z>Az = A(L/2)L = '> AL?

TR

force per unit length = A; total force = mg = AL

* Atany point, z, along the beam, the unsupported moment is given by:

L 2 2
L z mg
Mz)=| Mz—2)dZ =X|Lz—2>——+"| =— — 2Lz + L?
(2) /z (z — 2")dz z2—z 2—|—2 2L(z z+ L*)
*  From before, we saw that moment and radius of curvature for the beam are
related:
— M-=EI/R

 And the radius of a curve, Y, is the reciprocal of the second derivative:
— d?Y/dz?=1/R = M/EI

mg
— so for this beam, d?Y/dz? = M/EI =

" 9EIL
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Calculating the curve

* |f we want to know the deflection, Y, as a function of
distance, z, along the beam, and have the second
derivative...

* Integrate the second derivative twice:

d?Y mg , o mg [z* Lz® L?2?
A oLt Y =— 9 (2
iz~ agip® 2l - 2 3 T3

2EIL

— where C and D are constants of integration

— at z=0, we define Y=0, and note the slope is zero, so C and D are
likewise zero

— so, the beam follows:

—I—Cz—I—D)

myg

24FE1L
— with maximum deflection atend: y__ —

Y = — (24 — 4Lz + 6L2z2)

mgL3
SET




Bending Curve, lllustrated

[ Plastic ruler under own weight
1
Theoretical
O Experiment
2} .
-4
E
2 -6
z
-8
-10[ ]
Curve fit — E=3.6 GPa
~12 .
0 5 10 15 20 25 30
z [cm]
Le

20



End-loaded cantilever beam

‘ F,=F
A: M., = FL

* Playing the same game as before (integrate moment

from zto L): 2y 1 MG F
ME)=GE-DE= 42 =re)~ Bl ~ B

(2 -1L)

— which integrates to:

— and at z=0, Y=0 and slope=0 — C=D =0, yielding:
_ 2 _ kL’
Y—@(Z — 3Lz ) Ymax— 3R]
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Simply-supported beam under own
weight

F,=mg/2=AL/2 F,=mg/2 = AL/2

I A I I
A+++++++++++++++++++++

force per unit length = A; total force = mg = AL

e This support cannot exert a moment
L
M(z) = / Mz — 2)de' + %)\L(L _2) = %)\(Lz 22

2y A
dz2  2EI

A Lz3 24
Lz — 2?2 Y = — — D
(Lz — z%) — 2EI( 5 12+C’z+ )

— atz=0, Y=0 — D =0; at z=L/2, slope =0 — C=-13/12

5 mgL3
384 FEI

__mg
- 24EIL

(2Lz3 — 24— L3z) Yoiax =
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Simply-supported beam with centered
weight

1 F=F/2 t F,=F/2

AN JAN

F

* Working only from 0 <z < L/2 (symmetric):

L F F 2y F
2>—|——(L—z)= z dY  Fz

M(z):F<z__ 2 > 422 2EI
— integrating twice, setting Y(0) =0, Y’(L/2) = O:

_F 4 _F s 3L%2
Y_12EI(Z —I—Cz+D)—>Y_12EI(z ~ = )

— and the max deflection (at z=L/2):

FL3
A8ET

Ymax —
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S-flex beam

F
] “walls” are held vertical; beam flexes in
$ Mext = FL/Z llSn Shape
Moy = FL/2 T total M(z) = 2M,,,, - Fz - F(L-z) = 0 for all z
F

|

* Playing the same game as before (integrate moment

from zto L):
FL d*Yy 1 M) F

M(2) = Muy — F(L —2) = Fz — -~ - - —
(2) e = Fe e = e TR T EI  2EI

(22 — L)
— which integrates to:

F (23 Lz? FL3
2FI ( ) (L) db 12E1
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Cantilevered beam formulae

BEAM TYPE

| SLOPE AT FREE END | DEFLECTION AT ANY SECTION IN TERMS OF x |

MAXIMUM DEFLECTION
1. Cantilever Beam — Concentrated load P at the free end
p )
2 \I I ‘ A 2 2 3
q s 9=P1 y=Px (31—.r) m=i
2y - 2EI 6EI 3EI
: / !T
2. Cantilever Beam — Concentrated load P at any poimt
V. P 2
4 “ b b X 5 )==Px (3a-x) for 0<x<a ,
7 Pa* 6EI Pa*
7 s 6= 2 S = (31— a)
4y S 2E y=1a (3x—a) for a<x<i o
| [ JF Y 6EI ’

3. Cantilever Beam — Uniformly distributed load @ (N/m)

3 4
o=2 y=2E (x* +61* - 4ix) 5. =2
6EI 24E] : 8EI
4. Cantilever Beam — Uniformly varying load: Maximum mtensity o, (N/m)
o= ‘—;]- (/=x)
o, R 3 2 4
" - od y = (101 ~101x+ 51 - ) -0
may 24E] 120iET " e 30E7
L ! |
5. Cantilever Beam — Couple moment M at the free end
4 ! )
7 25 r _Mi M M
7 ~ B El Y= "I

T
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Simply Supported beam formulae

BEAM TYPE

SLOPE AT ENDS

DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM AND CENTER
DEFLECTION
6. Beam Simply Supported at Ends — Concentrated load P at the center
o, ] P | [ A ‘ X 2 P 312 3
W d,.. =0, = Ll v——t(——xz] for 0<x<— By = Ll
|y . T 16E1 12E| 4 2 48E]
7. Beam Simply Supported at Ends — Concentrated load P at any point
Pbx
p s 23 = (12—.1‘2—b2)f0t O<x<a 2_p2 ¥
L Pb(I*-b Pb(I"-b
T e W 14 x 6.=—( ) o S =—( ) at x= (17 -%)f3
3 GIEI Pb i 3 ;2 a2 , O3 IEI -
| < T Pab(2l-b) Y=g |5 <) ) P
! [ | 8= 6IEI 8=——+(3/"-4b") at the center,if a > b
! ‘ for a<x<l 48E1
8. Beam Simply Supported at Ends — Umiformly distributed load o (N/m)
6,=0,=-2" y=—2X (-2 + %) _ el
YV 1 24E] o == 384EI
9. Beam Simply Supported at Ends — Couple moment M at the right end
2
M _ Ml - =L at x =L
0% 9, ‘\’ x ' T 6ET T_MII . X 9J§EI ‘\{5
l,\‘ / | =M > Tem r &= Mr” at the center
- : PU3E 16EI
10. Beam Simply Supported at Ends — Uniformly varying load: Maximum mtensity o, (N/m)
o= 2 Tl o,
=—2° 5__=0.00652—=— at x=0.519/
1 mex
oy y= e (71107 431 o
)= 5=0.00651>2_ at the center
" A5EI
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Lessons to be learned

All deflections inversely proportional to E
— the stiffer the spring, the less it bends
All deflections inversely proportional to /
— cross-sectional geometry counts
All deflections proportional to applied force/weight
— inlinear regime: Hooke’s law
All deflections proportional to length cubed
— pay the price for going long!
— beware that if beam under own weight, mg o« L also (so L#)
Numerical prefactors of maximum deflection, Y, ., for same load/length were:
— 1/3 for end-loaded cantilever
— 1/8 for uniformly loaded cantilever
— 1/48 for center-loaded simple beam
— 5/384 ~ 1/77 for uniformly loaded simple beam

Thus support at both ends helps: cantilevers suffer



Getting a feel for the /-thingy

e The “moment of inertia,” or second moment came into
play in every calculation

I = / y2dzdy

e Calculating this for a variety of simple cross sections:
 Rectangular beam:

g b 375 3 2
b _ /[ 2 o _ YT _ab” _ATD
I_/_%d"”/_%ydy_ah]_%_ 12 124

— ﬁote the cube-power on b: twice as thick (in the direction of
bending) is 8-times better!

— For fixed area, win by fraction b/a




Moments Later
e Circular beam
— work in polar coordinates, with y = rsinf

R 27 4 2
Q I = / rdr / r? sin? 0dh = i = A7
0 0 4 47T

radius, R
— note that the area-squared fraction (1/4x) is very close to

that for a square beam (1/12 when a = b)

— so for the same area, a circular cross section performs
almost as well as a square

. .
CIFCUlar tUbe inner radius R,, outer radius R,
or, outer radius R, thickness t
Ro 2m T T
I= / rdr / 2 sin? 0dh = Z(R;l—R‘f) = Z(R§+R%)(R§—Rf) =
R, 0

A

Z(RerRg)



And more moments

e Circular tube, continued
— if R, =R, R, = R-t, for small t: | = (A%/4n)(R/t)
— for same area, thinner wall stronger (until crumples/dents

compromised integrity) 3
e Rectangular Tube )
— wall thickness = t
a b a b_¢ 3 b 3 b 3
2 2 2 2 b (— - t) (— — t)
I—Z/_%d:c/%_ty dy+2/%_td$/_%+ty dy—2(1, [24 3 +4t 3
— and if t is small compared to a & b:
INab2t+b3t I _2°t _ A%a
i 6 and for a square geom.: SA™ T T 9y ¢

— note that for a = b (square), side walls only contribute 1/4 of
the total moment of inertia: best to have more mass at
larger y-value: this is what makes the integral bigger!




The final moment

e The I-beam

— we will ignore the minor contribution from the “web”
connecting the two flanges

a b
b 2 B (2—1¢)3 ab?t
_ 25 o B ~
|b I—Z‘/_ d:c/gtydyZa[24 3 5

a
/]

a
2
/]

— note this is just the rectangular tube result without the side
wall. If you want to put a web member in, it will add an
extra b3t/12, roughly A2 b

— intermsofarea=2at: =~ 8 at

* The I-beam puts as much material at high y-value as it
can, where it maximally contributes to the beam
stiffness

— the web just serves to hold these flanges apart



Lessons on moments

Thickness in the direction of bending helps to the third
power

— always orient a 2x4 with the “4” side in the bending direction

For their weight/area, tubes do better by putting material
at high y-values

l-beams maximize the moment for the same reason

For square geometries, equal material area, and a
thickness 1/20 of width (where appropriate), we get:

— square solid: I = A%/12 = 0.083A?

— circular solid: I = A%2/4;1= 0.080A?

— square tube: | = 20A?%/24 =~ 0.83A?2

— circular tube: | = 10A%/47r =~ 0.80A% }10x better than solid form

— |-beam: | = 20A?/8 = 2.5A?
l-beam wins hands-down func. of assumed 1/20 ratio



Beyond Elasticity

* Materials remain elastic for a while
— returning to exact previous shape

e But ultimately plastic (permanent) deformation sets in
— and without a great deal of extra effort

G proportionality limit

Stress elastic limit ultimate stress
Gu
G; — . fracture
Gy
/.a—&-

Ou | Ultimate stress

(o7 Fracture stress

strain hardening necking

yielding
Gy Yield stress

Gpl| | Proportionality limit

| strain

| |
! ! plastic behavior ! €
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Breaking Stuff

* Once out of the elastic region, permanent damage
results

— thus one wants to stay below the yield stress
— vyield strain = yield stress / elastic modulus

Material Yield Stress (MPa) Yield Strain
Tungsten® 1400 0.004
Steel 280-1600 0.0015-0.0075
Brass, Bronze, 60-500 0.0005-0.0045
Copper

Aluminum 270-500 0.004-0.007
Glass™ 70 0.001
Wood 30-60 0.0025-0.005
most plastics™ 40-80 0.01-0.04

* ultimate stress quoted (see next slide for reason)



Notes on Yield Stress

* The entries in red in the previous table represent
ultimate stress rather than yield stress
— these are materials that are brittle, experiencing no plastic

deformation, or plastics, which do not have a well-defined
elastic-to-plastic transition

* There is much variability depending on alloys

— the yield stress for steels are
 stainless: 280-700
* machine: 340-700
* high strength: 340-1000
* tool: 520
* spring: 400-1600 (want these to be elastic as long as possible)

— aluminum alloys

* 6061-T6: 270 (most commonly used in machine shops)
 7075-T6: 480



Shear Stress

dA wall
r — bolt
Y T = F/A, where A is bolt’s
cross-sectional area
hanging mass
huge force, F
* T =Gy °

— tis the shear stress (N-m=) = force over area = F/dA
* dAis now the shear plane (see diagram)

— G is the shear modulus (N-m™)
— yis the angular deflection (radians)

* The shear modulus is related to E, the elastic modulus
— E/G =2(1+v)
— v is called Poisson’s ratio, and is typically around 0.27-0.33
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Practical applications of stress/strain

* Infrared spectrograph bending (flexure)

dewar whose inner shield is an aluminum tube 1/8 inch (3.2
mm) thick, 5 inch (127 mm) radius, and 1.5 m long

weight is 100 Newtons

loaded with optics throughout, so assume (extra) weight is 20 kg
— 200 Newtons

If gravity loads sideways (when telescope is near horizon), what
is maximum deflection, and what is maximum angle?

calculate I = (A2/47)(R/t) = 2x10> m*
E =70x10°

Y .. =mgL3/8El =90 um deflection
Y _ =mgl?/6El=280 uR angle

max

e Now the effect of these can be assessed in connection
with the optical performance



Applications, continued

* A stainless steel flexure to permit parallel displacement

»
I ¥ » I

— each flexing member has length L = 13 mm, width g =25 mm, and
bending thickness b = 2.5 mm, separated by d = 150 mm

— how much range of motion do we have?

— stress greatest on skin (max tension/compression)

— Max strain is € = O'y/E =280 MPa / 200 GPa = 0.0014

— strainis y/R, so b/2R = 0.0014 — R = b/0.0028 =0.9 m

— 0=L/R=0.013/0.9 = 0.014 radians (about a degree)

— so max displacement is about d-0=2.1 mm

— energy in bent member is EIL/R? = 0.1 J per member — 0.2 J total
— W=Fd— F=(0.2J)/(0.002 m) =100 N (~ 20 Ib)




Flexure Design

 Sometimes you need a design capable of flexing a
certain amount without breaking, but want the thing
to be as stiff as possible under this deflection

— strategy:
* work out deflection formula;

* decide where maximum stress is (where moment, and therefore
curvature, is greatest);

* work out formula for maximum stress;
* combine to get stress as function of displacement
* invert to get geometry of beam as function of tolerable stress

— example: end-loaded cantilever

FL3 Ay is displacement from
Yinax = E centerline (half-thickness)
M(z)=F(z— L) > maxat z=10
Ay  AyMp., FLAy FLAy

max strain, € = = — max stress, omax = Fe =

R EI ET I



Flexure Design, cont.

Note that the ratio F/I appears in both the Y, .. and g, formulae (can
therefore eliminate)

F EYax EYmaxA EYmax
omax=—LAy=3 LAy=3 y _ 3 h

3 where h = 24y
I L

L2 217 is beam thickness

If | can tolerate some fraction of the yield stress
Omax = O,/®, where @ is the safety factor (often chosen to be 2)

b Omax 2L Oy 2L% 212

E 3Y... O®E3Y.. M3y

so now we have the necessary (maximum) beam thickness that can
tolerate a displacement Y, without exceeding the safety factor, ®

You will need to go through a similar procedure to work out the thickness
of a flexure that follows the S-bend type (prevalent in the Lab 2)
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Notes on Bent Member Flexure Design

*  When the flex members have moments at both ends, they curve into
more-or-less an arc of constant radius, accomplishing angle 6

* R=EI/M,and 8=L/R = ML/EI, where L is the length of the flexing
beam (not the whole assembly)

*  Opax = E€nax = EAY/R = hOE/2L, so h = (0,/ PE)x(2L/ 6)
— where h=2AyandR=1/6



Kinematic Design

Physicists care where things are

— position and orientation of optics, detectors, etc. can really
matter

Much of the effort in the machine shop boils down to

holding things where they need to be

— and often allowing controlled adjustment around the nominal
position
Any rigid object has 6 degrees of freedom
— three translational motions in 3-D space

— three “Euler” angles of rotation

* take the earth: need to know two coordinates in sky to which polar
axis points, plus one rotation angle (time dependent) around this axis
to nail its orientation

Kinematic design seeks to provide minimal/critical
constraint



Basic Principles

* Athree-legged stool will never rock

— as opposed to 4-legged

— each leg removes one degree of freedom, leaving 3
e can move in two dimensions on planar floor, and can rotate about

vertical axis

* A pin & hole constrain two translational degrees of

freedom

* A second pin constrains rotation

— though best if it’s a diamond-shaped-pin, so that the device is

not over-constrained

dowel pin

cut/grinding lines

a diamond pin is a home-made
modification to a dowel pin:
sides are removed so that the
pin effectively is a one-dim.
constraint rather than 2-d



O

part with holes

O

O

two dowel pins

O

O

perfect (lucky) fit

O

but over-constrained

Diamond Pin Idea

O

part with holes

O

O

wrong separation

thermal stress, machining error

O

O

does not fit

Q

O

part with holes

O

O dowel pin

diamond pin

0

-
:: N
S
<

~. /
~ ’
= ’
~ ’
~
~
\\
/
Vi

constrains only rotation’

diamond pin must be ground on grinder from dowel pin: cannot buy




Kinematic Summary

 Combining these techniques, a part that must be
located precisely will:
— sit on three legs or pads
— be constrained within the plane by a dowel pin and a
diamond pin

* Reflective optics will often sit on three pads

— when making the baseplate, can leave three bumps in
appropriate places

* only have to be 0.010 high or so

— use delrin-tipped (plastic) spring plungers to gently push
mirror against pads



References and Assignment

For more on mechanics:
— Mechanics of Materials, by Gere and Timoshenko

For a boatload of stress/strain/deflection examples
worked out:

— Roark’s Formulas for Stress and Strain

Suggested reading from reference text:
— Section 1.5;1.5.1 & 1.5.5; 1.6, 1.6.1, 1.6.5, 1.6.6 (3" ed.)
— Section 1.2.3; 1.6.1; 1.7 (1.7.1, 1.7.5, 1.7.6) (4t" ed.)

Additional reading on Phys239 website

— https://tmurphy.physics.ucsd.edu/phys239/lectures/phys239_2016_lec12.pdf
— very similar development to this lecture, with more text




