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Why	we	need	to	know	about	materials	

•  Stuff	is	made	of	stuff	
–  what	should	your	part	be	made	of?	
–  what	does	it	have	to	do?	
–  how	thick	should	you	make	it	

•  The	proper-es	we	usually	care	about	are:	
–  s-ffness	
–  electrical	conduc-vity	
–  thermal	conduc-vity	
–  heat	capacity	
–  coefficient	of	thermal	expansion	
–  density	
–  hardness,	damage	poten-al	
–  machine-ability	
–  surface	condi-on	
–  suitability	for	coa-ng,	pla-ng,	etc.	
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Electrical	Resis-vity	
•  Expressed	as	ρ	in	Ω·m	

–  resistance	=	ρ·L/A		
•  where	L	is	length	and	A	is	area	

–  conduc-vity	is	1/ρ	

Material ρ (×10-6 Ω·m) comments 

Silver 0.0147 $$ 

Gold 0.0219 $$$$ 

Copper 0.0382 cheapest good conductor 

Aluminum 0.047 

Stainless Steel 0.06–0.12 
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Thermal	Conduc-vity	
•  Expressed	as	κ	in	W	m-1	K-1	

–  power	transmiNed	=	κ·A·ΔT/t,		
•  where	A	is	area,	t	is	thickness,	and	ΔT	is	the	temperature	across	the	material	

Material κ (W m-1 K-1) comments 

Silver 422 room T metals feel cold 

Copper 391 great for pulling away heat 

Gold 295 

Aluminum 205 

Stainless Steel 10–25 why cookware uses S.S. 

Glass, Concrete,Wood 0.5–3 buildings 

Many Plastics ~0.4 room T plastics feel warm 

G-10 fiberglass 0.29 strongest insulator choice 

Stagnant Air 0.024 but usually moving… 

Styrofoam 0.01–0.03 can be better than air! 
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Specific	Heat	(heat	capacity)	
•  Expressed	as	cp	in	J	kg-1	K-1	

–  energy	stored	=	cp·m·ΔT	
•  where	m	is	mass	and	ΔT	is	the	temperature	change	

Material cp (J kg-1 K-1) comments 

water 4184 powerhouse heat capacitor 

alcohol (and most liquids) 2500 

wood, air, aluminum, plastic 1000 most things! 

brass, copper, steel 400 

platinum 130 
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Coefficient	of	Thermal	Expansion	
•  Expressed	as	α	=	δL/L	per	degree	K	

–  length	contrac-on	=		α·ΔT·L,	
•  where	ΔT	is	the	temperature	change,	and	L	is	length	of	material	

Material α (×10-6 K-1) comments 

Most Plastics ~100 

Aluminum 24 

Copper 20 

Steel 15 

G-10 Fiberglass 9 

Wood 5 

Normal Glass 3–5 

Invar (Nickel/Iron alloy) 1.5 best structural choice 

Fused Silica Glass 0.6 



Lecture 3: Materials UCSD Physics 122 7 

Density	
•  Expressed	as	ρ	=	m/V	in	kg·m-3	

Material ρ (kg m-3) comments 

Platinum 21452 

Gold 19320 tell this to Indiana Jones 

Lead 11349 

Copper, Brass, Steels 7500–9200 

Aluminum Alloys 2700–2900 

Glass 2600 glass and aluminum v. similar 

G-10 Fiberglass 1800 

Water 1000 

Air at STP 1.3 
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Stress	and	Strain	
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Stress	and	Strain,	Illustrated	
•  A	bar	of	material,	with	a	force	F	

applied,	will	change	its	size	by:	
δL/L	=	ε	=	σ/E	=	F/AE	

•  Strain	is	a	very	useful	number,	being	
dimensionless	

•  Example:	Standing	on	an	aluminum	rod:	
–  E	=	70×109	N·m-2	(Pa)	
–  say	area	is	1	cm2	=	0.0001	m2	

–  say	length	is	1	m	

–  weight	is	700	N	
–  σ	=	7×106	N/m2	

–  ε	=	10-4	→	δL	=	100	µm	

–  compression	is	width	of	human	hair		

F	 F	

A	

δL	

L	
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Elas-c	Modulus	
•  Basically	like	a	spring	constant	

–  for	a	hunk	of	material,	k	=	E(A/L),	but	E	is	the	only	part	of	
this	that	is	intrinsic	to	the	material:	the	rest	is	geometry	

•  Units	are	N/m2,	or	a	pressure	(Pascals)	

Tungsten 350 
Steel 190–210 
Brass, Bronze, Copper 100–120 
Aluminum 70 
Glass 50–80 
G-10 fiberglass 16 
Wood 6–15 
most plastics 2–3 
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Bending	Beams	

•  A	bent	beam	has	a	stretched	outer	surface,	a	compressed	inner	
surface,	and	a	neutral	surface	somewhere	between	

•  If	the	neutral	length	is	L,	and	neutral	radius	is	R,	then	the	strain	at	
some	distance,	y,	from	the	neutral	surface	is	(R	+	y)/R	-	1	
–  ε	=	y/R	
–  because	arclength	for	same	Δθ	is	propor-onal	to	radius	
–  note	L	=	RΔθ	

•  So	stress	at	y	is	σ	=	Ey/R	

tension:	stretched	

compression	

neutral	“plane”	



Lecture 3: Materials UCSD Physics 122 12 

dV	

In	the	Moment	
•  Since	each	mass/volume	element	is	s-ll,	the	net	force	

is	zero	
–  Each	unit	pulls	on	its	neighbor	with	same	force	its	neighbor	

pulls	on	it,	and	on	down	the	line	
–  Thus	there	is	no	net	moment	(torque)	on	a	mass	element,	

and	thus	on	the	whole	beam	
•  otherwise	it	would	rotate:	angular	momentum	would	change	

–  But	something	is	exer-ng	the	bending	influence	

And	we	call	this	“something”	
the	moment	(balanced)	
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What’s	it	take	to	bend	it?	

•  At	each	infinitesimal	cross	sec-on	in	rod	with	coordinates	
(x,	y)	and	area	dA	=	dxdy:	
–  dF	=	σdA	=	(Ey/R)dA	
–  where	y	measures	the	distance	from	the	neutral	surface	
–  the	moment	(torque)	at	the	cross	sec-on	is	just	dM	=	y·dF	
–  so	dM	=	Ey2dA/R	
–  integra-ng	over	cross	sec-on:	

–  where	we	have	defined	the	“moment	of	iner-a”	as	
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Energy	in	the	bent	beam	
•  We	know	the	force	on	each	volume	element:	

–  dF	=	σ·dA	=	E·ε·dA	=	(Ey/R)dA	
•  We	know	that	the	length	changes	by	δL	=	εdz	=	σ·dz/E	
•  So	energy	is:	

–  dW	=	dF·δL	=	dF·ε·dz	=	E·ε·dA	×	ε·dz	=	E(y/R)2dxdydz	

•  Integrate	this	throughout	volume	

•  So	W	=	M(L/R)	≈	Mθ	∝	θ2	
–  where	θ	is	the	angle	through	which	the	beam	is	bent	

z-direc-on	
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Calcula-ng	beam	deflec-on	
•  We	start	by	making	a	free-body	diagram	so	that	all	forces	

and	torques	are	balanced	
–  otherwise	the	beam	would	fly/rotate	off	in	some	direc-on	

–  In	this	case,	the	wall	exerts	forces	and	moments	on	the	beam	
(though	Ax=0)	

–  This	example	has	three	point	masses	and	one	distributed	load	
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Tallying	the	forces/moments	

•  Ax	=	0;	Ay	=	21,000	lbs	
•  Mext	=	(4)(4000)	+	(8)(3000)	+	(14)(2000)	+	(11)(6)

(2000)	=	200,000	l-lbs	
–  last	term	is	integral:	

–  where	λ	is	the	force	per	unit	length	(2000	lbs/l)	
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A	Simpler	Example	

•  A	can-lever	beam	under	its	own	weight	(or	a	uniform	weight)	
–  Fy	and	Mext	have	been	defined	above	to	establish	force/moment	balance	

–  At	any	point,	distance	z	along	the	beam,	we	can	sum	the	moments	about	
this	point	and	find:	

–  valida-ng	that	we	have	no	net	moment	about	any	point,	and	thus	the	
beam	will	not	spin	up	on	its	own!	

force	per	unit	length	=	λ;	total	force	=	mg	=	λL	

Fy	=	mg	=	λL	

Mext	=	λ<z>Δz	=	λ(L/2)L	=	½ λL2	

z-axis	



Lecture 3: Materials UCSD Physics 122 18 

What’s	the	deflec-on?	

•  At	any	point,	z,	along	the	beam,	the	unsupported	moment	is	given	by:	

•  From	before,	we	saw	that	moment	and	radius	of	curvature	for	the	beam	are	
related:	

–  M	=	EI/R	

•  And	the	radius	of	a	curve,	Y,	is	the	reciprocal	of	the	second	deriva-ve:	
–  d2Y/dz2	=	1/R	=	M/EI	

–  so	for	this	beam,	d2Y/dz2	=	M/EI	=		

force	per	unit	length	=	λ;	total	force	=	mg	=	λL	

Fy	=	mg	=	λL	

Mext	=	λ<z>Δz	=	λ(L/2)L	=	½ λL2	

z-axis	
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Calcula-ng	the	curve	

•  If	we	want	to	know	the	deflec-on,	Y,	as	a	func-on	of	
distance,	z,	along	the	beam,	and	have	the	second	
deriva-ve…	

•  Integrate	the	second	deriva-ve	twice:	

–  where	C	and	D	are	constants	of	integra-on	
–  at	z=0,	we	define	Y=0,	and	note	the	slope	is	zero,	so	C	and	D	are	

likewise	zero	
–  so,	the	beam	follows:	

–  with	maximum	deflec-on	at	end:		
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Bending	Curve,	Illustrated	

•  Plas-c	ruler	follows	expected	can-lever	curve!	
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End-loaded	can-lever	beam	

•  Playing	the	same	game	as	before	(integrate	moment	
from	z	to	L):	

–  which	integrates	to:	

–  and	at	z=0,	Y=0	and	slope=0	→	C	=	D	=	0,	yielding:	

F	

Fy	=	F	

Mext	=	FL	
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Simply-supported	beam	under	own	
weight	

•  This	support	cannot	exert	a	moment	

–  at	z=0,	Y=0	→	D	=	0;	at	z=L/2,	slope	=	0	→	C	=	-L3/12	

force	per	unit	length	=	λ;	total	force	=	mg	=	λL	

Fy	=	mg/2	=	λL/2	 Fy	=	mg/2	=	λL/2	
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Simply-supported	beam	with	centered	
weight	

•  Working	only	from	0	<	z	<	L/2	(symmetric):	

–  integra-ng	twice,	serng	Y(0)	=	0,	Y’(L/2)	=	0:	

–  and	the	max	deflec-on	(at	z=L/2):	

F	

Fy	=	F/2	Fy	=	F/2	
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S-flex	beam	

•  Playing	the	same	game	as	before	(integrate	moment	
from	z	to	L):	

–  which	integrates	to:	

–  and	at	z=0,	Y=0	and	slope=0	→	C	=	D	=	0,	yielding:	

F	

F	

Mext	=	FL/2	

Mext	=	FL/2	

“walls”	are	held	ver-cal;	beam	flexes	in	
“S”	shape	

total	M(z)	=	2Mext	-	Fz	-	F(L-z)	=	0	for	all	z	

as	it	should	be	
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Can-levered	beam	formulae	
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Simply	Supported	beam	formulae	
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Lessons	to	be	learned	
•  All	deflec-ons	inversely	propor-onal	to	E	

–  the	s-ffer	the	spring,	the	less	it	bends	
•  All	deflec-ons	inversely	propor-onal	to	I	

–  cross-sec-onal	geometry	counts	
•  All	deflec-ons	propor-onal	to	applied	force/weight	

–  in	linear	regime:	Hooke’s	law	
•  All	deflec-ons	propor-onal	to	length	cubed	

–  pay	the	price	for	going	long!	
–  beware	that	if	beam	under	own	weight,	mg	∝	L	also	(so	L4)	

•  Numerical	prefactors	of	maximum	deflec-on,	Ymax,	for	same	load/length	were:	
–  1/3	for	end-loaded	can-lever	
–  1/8	for	uniformly	loaded	can-lever	
–  1/48	for	center-loaded	simple	beam	
–  5/384	~	1/77	for	uniformly	loaded	simple	beam	

•  Thus	support	at	both	ends	helps:	can-levers	suffer	
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Gerng	a	feel	for	the	I-thingy	

•  The	“moment	of	iner-a,”	or	second	moment	came	into	
play	in	every	calcula-on	

•  Calcula-ng	this	for	a	variety	of	simple	cross	sec-ons:	
•  Rectangular	beam:	

–  note	the	cube-power	on	b:	twice	as	thick	(in	the	direc-on	of	
bending)	is	8--mes	beNer!	

–  For	fixed	area,	win	by	frac-on	b/a	

a	

b	
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Moments	Later	
•  Circular	beam	

–  work	in	polar	coordinates,	with	y	=	rsinθ	

–  note	that	the	area-squared	frac-on	(1/4π)	is	very	close	to	
that	for	a	square	beam	(1/12	when	a	=	b)	

–  so	for	the	same	area,	a	circular	cross	sec-on	performs	
almost	as	well	as	a	square	

•  Circular	tube	

radius,	R	

inner	radius	R1,	outer	radius	R2	
or,	outer	radius	R,	thickness	t	
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And	more	moments	
•  Circular	tube,	con-nued	

–  if	R2	=	R,	R1	=	R-t,	for	small	t:	I	≈	(A2/4π)(R/t)	
–  for	same	area,	thinner	wall	stronger	(un-l	crumples/dents	

compromised	integrity)	

•  Rectangular	Tube	
–  wall	thickness	=	t	

–  and	if	t	is	small	compared	to	a	&	b:	

–  note	that	for	a	=	b	(square),	side	walls	only	contribute	1/4	of	
the	total	moment	of	iner-a:	best	to	have	more	mass	at	
larger	y-value:	this	is	what	makes	the	integral	bigger!	

a	

b	

and	for	a	square	geom.:	
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The	final	moment	
•  The	I-beam	

–  we	will	ignore	the	minor	contribu-on	from	the	“web”	
connec-ng	the	two	flanges	

–  note	this	is	just	the	rectangular	tube	result	without	the	side	
wall.		If	you	want	to	put	a	web	member	in,	it	will	add	an	
extra	b3t/12,	roughly	

–  in	terms	of	area	=	2at:	

•  The	I-beam	puts	as	much	material	at	high	y-value	as	it	
can,	where	it	maximally	contributes	to	the	beam	
s-ffness	
–  the	web	just	serves	to	hold	these	flanges	apart		

b	

a	
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Lessons	on	moments	

•  Thickness	in	the	direc-on	of	bending	helps	to	the	third	
power	
–  always	orient	a	2×4	with	the	“4”	side	in	the	bending	direc-on	

•  For	their	weight/area,	tubes	do	beNer	by	purng	material	
at	high	y-values	

•  I-beams	maximize	the	moment	for	the	same	reason	
•  For	square	geometries,	equal	material	area,	and	a	

thickness	1/20	of	width	(where	appropriate),	we	get:	
–  square	solid:	I	≈	A2/12	≈	0.083A2	
–  circular	solid:	I	≈	A2/4π	≈	0.080A2	
–  square	tube:	I	≈	20A2/24	≈	0.83A2	

–  circular	tube:	I	≈	10A2/4π	≈	0.80A2	
–  I-beam:	I	≈	20A2/8	≈	2.5A2	

•  I-beam	wins	hands-down	

10×	beNer	than	solid	form	

func.	of	assumed	1/20	ra-o	
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Beyond	Elas-city	
•  Materials	remain	elas-c	for	a	while	

–  returning	to	exact	previous	shape	
•  But	ul-mately	plas-c	(permanent)	deforma-on	sets	in	

–  and	without	a	great	deal	of	extra	effort	
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Breaking	Stuff	
•  Once	out	of	the	elas-c	region,	permanent	damage	

results	
–  thus	one	wants	to	stay	below	the	yield	stress	
–  yield	strain	=	yield	stress	/	elas-c	modulus	

Tungsten* 1400 0.004 

Steel 280–1600 0.0015–0.0075 

Brass, Bronze, 
Copper 

60–500 0.0005–0.0045 

Aluminum 270–500 0.004–0.007 

Glass* 70 0.001 

Wood 30–60 0.0025–0.005 

most plastics* 40–80 0.01–0.04 
*	ul-mate	stress	quoted	(see	next	slide	for	reason)	
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Notes	on	Yield	Stress	

•  The	entries	in	red	in	the	previous	table	represent	
ul-mate	stress	rather	than	yield	stress	
–  these	are	materials	that	are	briNle,	experiencing	no	plas-c	

deforma-on,	or	plas-cs,	which	do	not	have	a	well-defined	
elas-c-to-plas-c	transi-on	

•  There	is	much	variability	depending	on	alloys	
–  the	yield	stress	for	steels	are	

•  stainless:	280–700	
•  machine:	340–700	
•  high	strength:	340–1000	
•  tool:	520	
•  spring:	400–1600	(want	these	to	be	elas-c	as	long	as	possible)	

–  aluminum	alloys	
•  6061-T6:	270	(most	commonly	used	in	machine	shops)	
•  7075-T6:	480	
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Shear	Stress	

•  τ		=	Gγ	
–  τ	is	the	shear	stress	(N·m-2)	=	force	over	area	=	F/dA	

•  dA	is	now	the	shear	plane	(see	diagram)	
–  G	is	the	shear	modulus	(N·m-2)	
–  γ	is	the	angular	deflec-on	(radians)	

•  The	shear	modulus	is	related	to	E,	the	elas-c	modulus	
–  E/G	=	2(1+ν)	
–  ν	is	called	Poisson’s	ra-o,	and	is	typically	around	0.27–0.33	

dA	

F	

huge	force,	F	

bolt	

wall	

hanging	mass	

τ		=	F/A,	where	A	is	bolt’s	
cross-sec-onal	area	
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Prac-cal	applica-ons	of	stress/strain	

•  Infrared	spectrograph	bending	(flexure)	
–  dewar	whose	inner	shield	is	an	aluminum	tube	1/8	inch	(3.2	

mm)	thick,	5	inch	(127	mm)	radius,	and	1.5	m	long	
–  weight	is	100	Newtons	
–  loaded	with	op-cs	throughout,	so	assume	(extra)	weight	is	20	kg	
→	200	Newtons	

–  If	gravity	loads	sideways	(when	telescope	is	near	horizon),	what	
is	maximum	deflec-on,	and	what	is	maximum	angle?	

–  calculate	I	≈	(A2/4π)(R/t)	=	2×10-5	m4	
–  E	=	70×109	
–  Ymax	=	mgL3/8EI	=	90	µm	deflec-on	
–  Y’max	=	mgL2/6EI	=	80	µR	angle	

•  Now	the	effect	of	these	can	be	assessed	in	connec-on	
with	the	op-cal	performance	
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Applica-ons,	con-nued	
•  A	stainless	steel	flexure	to	permit	parallel	displacement	

–  each	flexing	member	has	length	L	=	13	mm,	width	a	=	25	mm,	and	
bending	thickness	b	=	2.5	mm,	separated	by	d	=	150	mm	

–  how	much	range	of	mo-on	do	we	have?	
–  stress	greatest	on	skin	(max	tension/compression)	
–  Max	strain	is	ε	=	σy/E	=	280	MPa	/	200	GPa	=	0.0014	
–  strain	is	y/R,	so	b/2R	=	0.0014	→	R	=	b/0.0028	=	0.9	m	
–  θ	=	L/R	=	0.013/0.9	=	0.014	radians	(about	a	degree)	
–  so	max	displacement	is	about	d·θ	=	2.1	mm	
–  energy	in	bent	member	is	EIL/R2	=	0.1	J	per	member	→	0.2	J	total	
–  W	=	F·d	→	F	=	(0.2	J)/(0.002	m)	=	100	N	(~	20	lb)	

d	
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Flexure	Design	
•  Some-mes	you	need	a	design	capable	of	flexing	a	

certain	amount	without	breaking,	but	want	the	thing	
to	be	as	s-ff	as	possible	under	this	deflec-on	
–  strategy:		

•  work	out	deflec-on	formula;		
•  decide	where	maximum	stress	is	(where	moment,	and	therefore	
curvature,	is	greatest);		

•  work	out	formula	for	maximum	stress;		
•  combine	to	get	stress	as	func-on	of	displacement	
•  invert	to	get	geometry	of	beam	as	func-on	of	tolerable	stress	

–  example:	end-loaded	can-lever	

Δy	is	displacement	from	
centerline	(half-thickness)	
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Flexure	Design,	cont.	
•  Note	that	the	ra-o	F/I	appears	in	both	the	Ymax	and	σmax	formulae	(can	

therefore	eliminate)	

•  If	I	can	tolerate	some	frac-on	of	the	yield	stress	
σmax	=	σy/Φ,	where	Φ	is	the	safety	factor	(olen	chosen	to	be	2)	

•  so	now	we	have	the	necessary	(maximum)	beam	thickness	that	can	
tolerate	a	displacement	Ymax	without	exceeding	the	safety	factor,	Φ		

•  You	will	need	to	go	through	a	similar	procedure	to	work	out	the	thickness	
of	a	flexure	that	follows	the	S-bend	type	(prevalent	in	the	Lab	2)	

where	h	=	2Δy	
is	beam	thickness	
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Notes	on	Bent	Member	Flexure	Design	

•  When	the	flex	members	have	moments	at	both	ends,	they	curve	into	
more-or-less	an	arc	of	constant	radius,	accomplishing	angle	θ	

•  R	=	EI/M,	and	θ	=	L/R	=	ML/EI,	where	L	is	the	length	of	the	flexing	
beam	(not	the	whole	assembly)	

•  σmax	=	Eεmax	=	EΔy/R	=	hθE/2L,	so	h	=	(σy/ΦE)×(2L/θ)	

–  where	h	=	2Δy	and	R	=	L/θ	
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Kinema-c	Design	

•  Physicists	care	where	things	are	
–  posi-on	and	orienta-on	of	op-cs,	detectors,	etc.	can	really	

maNer	
•  Much	of	the	effort	in	the	machine	shop	boils	down	to	

holding	things	where	they	need	to	be	
–  and	olen	allowing	controlled	adjustment	around	the	nominal	

posi-on	
•  Any	rigid	object	has	6	degrees	of	freedom	

–  three	transla-onal	mo-ons	in	3-D	space	
–  three	“Euler”	angles	of	rota-on	

•  take	the	earth:	need	to	know	two	coordinates	in	sky	to	which	polar	
axis	points,	plus	one	rota-on	angle	(-me	dependent)	around	this	axis	
to	nail	its	orienta-on	

•  Kinema-c	design	seeks	to	provide	minimal/cri-cal	
constraint	
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Basic	Principles	
•  A	three-legged	stool	will	never	rock	

–  as	opposed	to	4-legged	
–  each	leg	removes	one	degree	of	freedom,	leaving	3	

•  can	move	in	two	dimensions	on	planar	floor,	and	can	rotate	about	
ver-cal	axis	

•  A	pin	&	hole	constrain	two	transla-onal	degrees	of	
freedom	

•  A	second	pin	constrains	rota-on	
–  though	best	if	it’s	a	diamond-shaped-pin,	so	that	the	device	is	

not	over-constrained	 cut/grinding	lines	

dowel	pin	

a	diamond	pin	is	a	home-made	
modifica-on	to	a	dowel	pin:	
sides	are	removed	so	that	the	
pin	effec-vely	is	a	one-dim.	
constraint	rather	than	2-d	



Diamond	Pin	Idea	

part	with	holes	 part	with	holes	 part	with	holes	

two	dowel	pins	

perfect	(lucky)	fit	

but	over-constrained	

wrong	separa-on	

does	not	fit	

thermal	stress,	machining	error	

dowel	pin	

diamond	pin	

constrains	only	rota-on	

diamond	pin	must	be	ground	on	grinder	from	dowel	pin:	cannot	buy	
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Kinema-c	Summary	

•  Combining	these	techniques,	a	part	that	must	be	
located	precisely	will:	
–  sit	on	three	legs	or	pads	
–  be	constrained	within	the	plane	by	a	dowel	pin	and	a	
diamond	pin	

•  Reflec-ve	op-cs	will	olen	sit	on	three	pads	
–  when	making	the	baseplate,	can	leave	three	bumps	in	
appropriate	places	

•  only	have	to	be	0.010	high	or	so	
–  use	delrin--pped	(plas-c)	spring	plungers	to	gently	push	
mirror	against	pads	
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References	and	Assignment	

•  For	more	on	mechanics:	
–  Mechanics	of	Materials,	by	Gere	and	Timoshenko	

•  For	a	boatload	of	stress/strain/deflec-on	examples	
worked	out:	
–  Roark’s	Formulas	for	Stress	and	Strain	

•  Suggested	reading	from	reference	text:	
–  Sec-on	1.5;	1.5.1	&	1.5.5;	1.6,	1.6.1,	1.6.5,	1.6.6	(3rd	ed.)	
–  Sec-on	1.2.3;	1.6.1;	1.7	(1.7.1,	1.7.5,	1.7.6)	(4th	ed.)	

•  Addi-onal	reading	on	Phys239	website	
–  hNps://tmurphy.physics.ucsd.edu/phys239/lectures/phys239_2016_lec12.pdf	
–  very	similar	development	to	this	lecture,	with	more	text	


