

Materials

Properties
Mechanics

Why we need to know about materials

- Stuff is made of stuff
- what should your part be made of?
- what does it have to do?
- how thick should you make it
- The properties we usually care about are:
- stiffness
- electrical conductivity
- thermal conductivity
- heat capacity
- coefficient of thermal expansion
- density
- hardness, damage potential
- machine-ability
- surface condition
- suitability for coating, plating, etc.

Electrical Resistivity

- Expressed as ρ in $\Omega \cdot \mathrm{m}$
- resistance $=\rho \cdot L / A$
- where L is length and A is area
- conductivity is $1 / \rho$

Material	$\rho\left(\times 10^{-6} \Omega \cdot \mathrm{~m}\right)$	comments
Silver	0.0147	$\$ \$$
Gold	0.0219	$\$ \$ \$ \$$
Copper	0.0382	cheapest good conductor
Aluminum	0.047	
Stainless Steel	$0.06-0.12$	

Thermal Conductivity

- Expressed as κ in $\mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}$
- power transmitted $=\kappa \cdot A \cdot \Delta T / t$,
- where A is area, t is thickness, and ΔT is the temperature across the material

Material	$\kappa\left(\mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}\right)$	comments
Silver	422	room T metals feel cold
Copper	391	great for pulling away heat
Gold	295	
Aluminum	205	
Stainless Steel	$10-25$	why cookware uses S.S.
Glass, Concrete,Wood	$0.5-3$	buildings
Many Plastics	~ 0.4	room T plastics feel warm
G-10 fiberglass	0.29	strongest insulator choice
Stagnant Air	0.024	but usually moving...
Styrofoam	$0.01-0.03$	can be better than air!

Specific Heat (heat capacity)

- Expressed as c_{p} in $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$
- energy stored $=c_{p} \cdot m \cdot \Delta T$
- where m is mass and ΔT is the temperature change

Material	$\mathrm{c}_{\mathrm{p}}\left(\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\right)$	comments
water	4184	powerhouse heat capacitor
alcohol (and most liquids)	2500	
wood, air, aluminum, plastic	1000	most things!
brass, copper, steel	400	
platinum	130	

Coefficient of Thermal Expansion

- Expressed as $\alpha=\delta L / L$ per degree K
- length contraction $=\alpha \cdot \Delta T \cdot L$,
- where ΔT is the temperature change, and L is length of material

Material	$\alpha\left(\times 10^{-6} \mathrm{~K}^{-1}\right)$	comments
Most Plastics	~ 100	
Aluminum	24	
Copper	20	
Steel	15	
G-10 Fiberglass	9	
Wood	5	
Normal Glass	$3-5$	
Invar (Nickel/Iron alloy)	1.5	best structural choice
Fused Silica Glass	0.6	

Density

- Expressed as $\rho=m / V$ in $\mathrm{kg} \cdot \mathrm{m}^{-3}$

Material	$\rho\left(\mathrm{kg} \mathrm{m}^{-3}\right)$	comments
Platinum	21452	
Gold	19320	tell this to Indiana Jones
Lead	11349	
Copper, Brass, Steels	$7500-9200$	
Aluminum Alloys	$2700-2900$	
Glass	2600	glass and aluminum v. similar
G-10 Fiberglass	1800	
Water	1000	
Air at STP	1.3	

Stress and Strain

- Everything is a spring!
- nothing is infinitely rigid
- You know Hooke’s Law:
$F=k \cdot \delta L$
- where k is the spring constant (N / m), δL is length change
- for a given material, k should be proportional to A / L
- say $k=E \cdot A / L$, where E is some elastic constant of the material
- Now divide by cross-sectional area

$$
F / A=\sigma=k \cdot \delta L / A=E \cdot \varepsilon \quad \sigma=E \cdot \varepsilon
$$

- where ε is $\delta L / L$: the fractional change in length
- This is the stress-strain law for materials
- σ is the stress, and has units of pressure
- ε is the strain, and is unitless

Stress and Strain, Illustrated

- A bar of material, with a force F applied, will change its size by:

$$
\delta L / L=\varepsilon=\sigma / E=F / A E
$$

- Strain is a very useful number, being dimensionless
- Example: Standing on an aluminum rod:
$-E=70 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{-2}$ (Pa)
- say area is $1 \mathrm{~cm}^{2}=0.0001 \mathrm{~m}^{2}$
- say length is 1 m
- weight is 700 N
$-\sigma=7 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

$$
\varepsilon=\delta L / L
$$

$-\varepsilon=10^{-4} \rightarrow \delta L=100 \mu \mathrm{~m}$

- compression is width of human hair

$$
\sigma=F / A
$$

$$
\sigma=E \cdot \varepsilon
$$

Elastic Modulus

- Basically like a spring constant
- for a hunk of material, $k=E(A / L)$, but E is the only part of this that is intrinsic to the material: the rest is geometry
- Units are $\mathrm{N} / \mathrm{m}^{2}$, or a pressure (Pascals)

Material	$\mathrm{E}(\mathrm{GPa})$
Tungsten	350
Steel	$190-210$
Brass, Bronze, Copper	$100-120$
Aluminum	70
Glass	$50-80$
G-10 fiberglass	16
Wood	$6-15$
most plastics	$2-3$

Bending Beams

- A bent beam has a stretched outer surface, a compressed inner surface, and a neutral surface somewhere between
- If the neutral length is L, and neutral radius is R, then the strain at some distance, y, from the neutral surface is $(R+y) / R-1$
- $\varepsilon=y / R$
- because arclength for same $\Delta \theta$ is proportional to radius
- note $L=R \Delta \theta$
- So stress at y is $\sigma=E y / R$

In the Moment

- Since each mass/volume element is still, the net force is zero
- Each unit pulls on its neighbor with same force its neighbor pulls on it, and on down the line
- Thus there is no net moment (torque) on a mass element, and thus on the whole beam
- otherwise it would rotate: angular momentum would change
- But something is exerting the bending influence

And we call this "something" the moment (balanced)

What's it take to bend it?

- At each infinitesimal cross section in rod with coordinates (x, y) and area $d A=d x d y$:
$-d F=\sigma d A=(E y / R) d A$
- where y measures the distance from the neutral surface
- the moment (torque) at the cross section is just $d M=y \cdot d F$
- so $d M=E y^{2} d A / R$
- integrating over cross section:

$$
M=\int \frac{E}{R} y^{2} d x d y=\frac{E I}{R}
$$

- where we have defined the "moment of inertia" as

$$
I \equiv \int y^{2} d x d y
$$

Energy in the bent beam

- We know the force on each volume element:

$$
-d F=\sigma \cdot d A=E \cdot \varepsilon \cdot d A=(E y / R) d A
$$

- We know that the length changes by $\delta L=\varepsilon d z=\sigma \cdot d z / E$
- So energy is:

$$
-d W=d F \cdot \delta L=d F \cdot \varepsilon \cdot d z=E \cdot \varepsilon \cdot d A \times \varepsilon \cdot d z=E(y / R)^{2} d x d y d z
$$

- Integrate this throughout volume

$$
W=\frac{E}{R^{2}} \int y^{2} d x d y d z=\frac{E I L}{R^{2}}
$$

- So $W=M(L / R) \approx M \theta \propto \theta^{2}$
- where θ is the angle through which the beam is bent

Calculating beam deflection

- We start by making a free-body diagram so that all forces and torques are balanced
- otherwise the beam would fly/rotate off in some direction

- In this case, the wall exerts forces and moments on the beam (though $A_{x}=0$)
- This example has three point masses and one distributed load

Tallying the forces/moments

- $A_{\mathrm{x}}=0 ; A_{\mathrm{y}}=21,000 \mathrm{lbs}$
- $M_{\text {ext }}=(4)(4000)+(8)(3000)+(14)(2000)+(11)(6)$ (2000) $=200,000 \mathrm{ft}-\mathrm{lbs}$
- last term is integral:
$M=\int_{x_{1}}^{x_{2}} \lambda x d x=\left[\lambda \frac{x^{2}}{2}\right]_{x_{1}}^{x_{2}}=\lambda \frac{x_{1}+x_{2}}{2}\left(x_{2}-x_{1}\right)=\lambda\langle x\rangle \Delta x$
- where λ is the force per unit length ($2000 \mathrm{lbs} / \mathrm{ft}$)

force per unit length $=\lambda$; total force $=m g=\lambda L$
- A cantilever beam under its own weight (or a uniform weight)
- F_{y} and $M_{\text {ext }}$ have been defined above to establish force/moment balance
- At any point, distance z along the beam, we can sum the moments about this point and find:

$$
M_{\mathrm{tot}}=M_{\mathrm{ext}}-z F_{y}+\int_{0}^{L} \lambda\left(z-z^{\prime}\right) d z^{\prime}=\frac{1}{2} \lambda L^{2}-\lambda L z+\lambda L z-\frac{1}{2} \lambda L^{2}=0
$$

- validating that we have no net moment about any point, and thus the beam will not spin up on its own!

What's the deflection?

force per unit length $=\lambda$; total force $=m g=\lambda L$

- At any point, z, along the beam, the unsupported moment is given by:

$$
M(z)=\int_{z}^{L} \lambda\left(z-z^{\prime}\right) d z^{\prime}=\lambda\left[L z-z^{2}-\frac{L^{2}}{2}+\frac{z^{2}}{2}\right]=-\frac{m g}{2 L}\left(z^{2}-2 L z+L^{2}\right)
$$

- From before, we saw that moment and radius of curvature for the beam are related:
- $M=E I / R$
- And the radius of a curve, Y, is the reciprocal of the second derivative:
$-d^{2} Y / d z^{2}=1 / R=M / E I$
- so for this beam, $d^{2} Y / d z^{2}=M / E I=\quad-\frac{m g}{2 E I L}\left(z^{2}-2 L z+L^{2}\right)$

Calculating the curve

- If we want to know the deflection, Y, as a function of distance, z, along the beam, and have the second derivative...
- Integrate the second derivative twice:

$$
\frac{d^{2} Y}{d z^{2}}=-\frac{m g}{2 E I L}\left(z^{2}-2 L z+L^{2}\right) \rightarrow Y=-\frac{m g}{2 E I L}\left(\frac{z^{4}}{12}-\frac{L z^{3}}{3}+\frac{L^{2} z^{2}}{2}+C z+D\right)
$$

- where C and D are constants of integration
- at $z=0$, we define $Y=0$, and note the slope is zero, so C and D are likewise zero
- so, the beam follows:

$$
Y=-\frac{m g}{24 E I L}\left(z^{4}-4 L z^{3}+6 L^{2} z^{2}\right)
$$

- with maximum deflection at end: $\quad Y_{\max }=\frac{m g L^{3}}{8 E I}$

Bending Curve, Illustrated

- Playing the same game as before (integrate moment from z to L):

$$
M(z)=(z-L) F \rightarrow \frac{d^{2} Y}{d z^{2}}=\frac{1}{R(z)}=\frac{M(z)}{E I}=\frac{F}{E I}(z-L)
$$

- which integrates to:

$$
Y=\frac{F}{E I}\left(\frac{z^{3}}{6}-\frac{L z^{2}}{2}+C z+D\right)
$$

- and at $z=0, Y=0$ and slope $=0 \rightarrow C=D=0$, yielding:

$$
Y=\frac{F}{6 E I}\left(z^{3}-3 L z^{2}\right) \quad Y_{\max }=\frac{F L^{3}}{3 E I}
$$

Simply-supported beam under own

force per unit length $=\lambda$; total force $=m g=\lambda L$

- This support cannot exert a moment

$$
\begin{aligned}
& M(z)=\int_{z}^{L} \lambda\left(z-z^{\prime}\right) d z^{\prime}+\frac{1}{2} \lambda L(L-z)=\frac{1}{2} \lambda\left(L z-z^{2}\right) \\
& \frac{d^{2} Y}{d z^{2}}=\frac{\lambda}{2 E I}\left(L z-z^{2}\right) \rightarrow Y=\frac{\lambda}{2 E I}\left(\frac{L z^{3}}{6}-\frac{z^{4}}{12}+C z+D\right) \\
& - \text { at } z=0, Y=0 \rightarrow D=0 ; \text { at } z=L / 2, \text { slope }=0 \rightarrow C=-L^{3} / 12 \\
& \quad Y=\frac{m g}{24 E I L}\left(2 L z^{3}-z^{4}-L^{3} z\right) \quad Y_{\max }=\frac{5}{384} \frac{m g L^{3}}{E I}
\end{aligned}
$$

Simply-supported beam with centered weight

- Working only from $0<z<L / 2$ (symmetric):

$$
M(z)=F\left(z-\frac{L}{2}\right)+\frac{F}{2}(L-z)=\frac{F z}{2} \rightarrow \frac{d^{2} Y}{d z^{2}}=\frac{F z}{2 E I}
$$

- integrating twice, setting $Y(0)=0, Y^{\prime}(L / 2)=0$:

$$
Y=\frac{F}{12 E I}\left(z^{3}+C z+D\right) \rightarrow Y=\frac{F}{12 E I}\left(z^{3}-\frac{3 L^{2} z}{4}\right)
$$

- and the max deflection (at $z=L / 2$):

$$
Y_{\max }=\frac{F L^{3}}{48 E I}
$$

- Playing the same game as before (integrate moment from z to L):

$$
M(z)=M_{\mathrm{ext}}-F(L-z)=F z-\frac{F L}{2} \rightarrow \frac{d^{2} Y}{d z^{2}}=\frac{1}{R(z)}=\frac{M(z)}{E I}=\frac{F}{2 E I}(2 z-L)
$$

- which integrates to:

$$
Y=\frac{F}{E I}\left(\frac{z^{3}}{6}-\frac{L z^{2}}{4}+C z+D\right)
$$

- and at $z=0, \gamma=0$ and slope $=0 \rightarrow C=D=0$, yielding:

$$
\qquad Y=\frac{F}{2 E I}\left(\frac{z^{3}}{3}-\frac{L z^{2}}{2}\right) \quad \begin{aligned}
& Y^{\prime}(L)=0 \\
& \text { as it should be } \\
& \text { Lecture 3: Materials }
\end{aligned} \quad Y_{\max }=\frac{F L^{3}}{12 E I}
$$

Cantilevered beam formulae

BEAM TYPE	SLOPE AT FREE END	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM DEFLECTION
1. Cantilever Beam-Concentrated load P at the free end			
	$\theta=\frac{P l^{2}}{2 E I}$	$y=\frac{P x^{2}}{6 E I}(3 l-x)$	$\delta_{\text {max }}=\frac{P l^{3}}{3 E I}$
2. Cantilever Beam-Concentrated load P at any point			
	$\theta=\frac{P a^{2}}{2 E I}$	$\begin{aligned} & y=\frac{P x^{2}}{6 E I}(3 a-x) \text { for } 0<x<a \\ & y=\frac{P a^{2}}{6 E I}(3 x-a) \text { for } a<x<l \end{aligned}$	$\delta_{\text {max }}=\frac{P a^{2}}{6 E I}(3 l-a)$
3. Cantilever Beam - Uniformly distributed load $\omega(\mathrm{N} / \mathrm{m}$)			
	$\theta=\frac{\omega l^{3}}{6 E I}$	$y=\frac{\omega x^{2}}{24 E I}\left(x^{2}+6 l^{2}-4 l x\right)$	$\delta_{\max }=\frac{\omega l^{4}}{8 E I}$
4. Cantilever Beam - Uniformly varying load: Maximum intensity $\omega_{0}(\mathrm{~N} / \mathrm{m})$			
	$\theta=\frac{\omega_{0} l^{3}}{24 E I}$	$y=\frac{\omega_{0} x^{2}}{120 l E I}\left(10 l^{3}-10 l^{2} x+5 l x^{2}-x^{3}\right)$	$\delta_{\max }=\frac{\omega_{0} l^{4}}{30 E I}$
5. Cantilever Beam-Couple moment M at the free end			
	$\theta=\frac{M l}{E I}$	$y=\frac{M x^{2}}{2 E I}$	$\delta_{\text {max }}=\frac{M l^{2}}{2 E I}$

Simply Supported beam formulae

BEAM TYPE	SLOPE AT ENDS	DEFLECTION AT ANY SECTION IN TERMS OF \boldsymbol{x}	MAXIMUM AND CENTER DEFLECTION
6. Beam Simply Supported at Ends - Concentrated load P at the center			
	$\theta_{1}=\theta_{2}=\frac{P l^{2}}{16 E I}$	$y=\frac{P x}{12 E I}\left(\frac{3 l^{2}}{4}-x^{2}\right)$ for $0<x<\frac{l}{2}$	$\delta_{\max }=\frac{P l^{3}}{48 E I}$
7. Beam Simply Supported at Ends - Concentrated load P at any point			
	$\begin{aligned} & \theta_{1}=\frac{P b\left(l^{2}-b^{2}\right)}{6 l E I} \\ & \theta_{2}=\frac{P a b(2 l-b)}{6 l E I} \end{aligned}$	$\begin{array}{r} y=\frac{P b x}{6 l E I}\left(l^{2}-x^{2}-b^{2}\right) \text { for } 0<x<a \\ y=\frac{P b}{6 l E I}\left[\frac{l}{b}(x-a)^{3}+\left(l^{2}-b^{2}\right) x-x^{3}\right] \\ \text { for } a<x<l \end{array}$	$\begin{aligned} & \delta_{\max }=\frac{P b\left(l^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} l E I} \text { at } x=\sqrt{\left(l^{2}-b^{2}\right) / 3} \\ & \delta=\frac{P b}{48 E I}\left(3 l^{2}-4 b^{2}\right) \text { at the center, if } a>b \end{aligned}$
8. Beam Simply Supported at Ends - Uniformly distributed load ω (N / m)			
	$\theta_{1}=\theta_{2}=\frac{\omega l^{3}}{24 E I}$	$y=\frac{\omega x}{24 E I}\left(l^{3}-2 l x^{2}+x^{3}\right)$	$\delta_{\max }=\frac{5 \omega l^{4}}{384 E I}$
9. Beam Simply Supported at Ends - Couple moment M at the right end			
	$\begin{aligned} & \theta_{1}=\frac{M l}{6 E I} \\ & \theta_{2}=\frac{M l}{3 E I} \end{aligned}$	$y=\frac{M l x}{6 E I}\left(1-\frac{x^{2}}{l^{2}}\right)$	$\begin{aligned} & \delta_{\max }=\frac{M l^{2}}{9 \sqrt{3} E I} \text { at } x=\frac{l}{\sqrt{3}} \\ & \delta=\frac{M l^{2}}{16 E I} \text { at the center } \end{aligned}$
10. Beam Simply Supported at Ends - Uniformly varying load: Maximum intensity $\omega_{0}(\mathrm{~N} / \mathrm{m})$			
	$\begin{aligned} & \theta_{1}=\frac{7 \omega_{0} l^{3}}{360 E I} \\ & \theta_{2}=\frac{\omega_{0} l^{3}}{45 E I} \end{aligned}$	$y=\frac{\omega_{0} x}{360 l E I}\left(7 l^{4}-10 l^{2} x^{2}+3 x^{4}\right)$	$\begin{aligned} & \delta_{\max }=0.00652 \frac{\omega_{0} l^{4}}{E I} \text { at } x=0.519 l \\ & \delta=0.00651 \frac{\omega_{\mathrm{o}} l^{4}}{E I} \text { at the center } \end{aligned}$

Lessons to be learned

- All deflections inversely proportional to E
- the stiffer the spring, the less it bends
- All deflections inversely proportional to I
- cross-sectional geometry counts
- All deflections proportional to applied force/weight
- in linear regime: Hooke's law
- All deflections proportional to length cubed
- pay the price for going long!
- beware that if beam under own weight, $m g \propto L$ also (so L^{4})
- Numerical prefactors of maximum deflection, $Y_{\text {max }}$, for same load/length were:
- $1 / 3$ for end-loaded cantilever
- $1 / 8$ for uniformly loaded cantilever
- 1/48 for center-loaded simple beam
- 5/384~1/77 for uniformly loaded simple beam
- Thus support at both ends helps: cantilevers suffer

Getting a feel for the l-thingy

- The "moment of inertia," or second moment came into play in every calculation

$$
I \equiv \int y^{2} d x d y
$$

- Calculating this for a variety of simple cross sections:
- Rectangular beam:
b $\square I=\int_{-\frac{a}{2}}^{\frac{a}{2}} d x \int_{-\frac{b}{2}}^{\frac{b}{2}} y^{2} d y=a\left[\frac{y^{3}}{3}\right]_{-\frac{b}{2}}^{\frac{b}{2}}=\frac{a b^{3}}{12}=\frac{A^{2}}{12} \frac{b}{a}$
- note the cube-power on b : twice as thick (in the direction of bending) is 8 -times better!
- For fixed area, win by fraction b / a

Moments Later

- Circular beam
- work in polar coordinates, with $y=r \sin \theta$

$$
I=\int_{0}^{R} r d r \int_{0}^{2 \pi} r^{2} \sin ^{2} \theta d \theta=\frac{\pi R^{4}}{4}=\frac{A^{2}}{4 \pi}
$$

radius, R

- note that the area-squared fraction (1/4 π) is very close to that for a square beam ($1 / 12$ when $a=b$)
- so for the same area, a circular cross section performs almost as well as a square
- Circular tube

$$
\text { inner radius } R_{1} \text {, outer radius } R_{2}
$$ or, outer radius R, thickness t

$I=\int_{R_{1}}^{R_{2}} r d r \int_{0}^{2 \pi} r^{2} \sin ^{2} \theta d \theta=\frac{\pi}{4}\left(R_{2}^{4}-R_{1}^{4}\right)=\frac{\pi}{4}\left(R_{2}^{2}+R_{1}^{2}\right)\left(R_{2}^{2}-R_{1}^{2}\right)=\frac{A}{4}\left(R_{1}^{2}+R_{2}^{2}\right)$

And more moments

- Circular tube, continued
- if $R_{2}=R, R_{1}=R$ - t, for small $t: I \approx\left(A^{2} / 4 \pi\right)(R / t)$
- for same area, thinner wall stronger (until crumples/dents compromised integrity)
- Rectangular Tube
- wall thickness $=t$
$I=2 \int_{-\frac{a}{2}}^{\frac{a}{2}} d x \int_{\frac{b}{2}-t}^{\frac{b}{2}} y^{2} d y+2 \int_{\frac{a}{2}-t}^{\frac{a}{2}} d x \int_{-\frac{b}{2}+t}^{\frac{b}{2}-t} y^{2} d y=2 a\left[\frac{b^{3}}{24}-\frac{\left(\frac{b}{2}-t\right)^{3}}{3}\right]+4 t \frac{\left(\frac{b}{2}-t\right)^{3}}{3}$
- and if t is small compared to a \& b :

$$
I \approx \frac{a b^{2} t}{2}+\frac{b^{3} t}{6} \text { and for a square geom.: } \quad I_{\mathrm{sq}} \approx \frac{2 a^{3} t}{3} \approx \frac{A^{2}}{24} \frac{a}{t}
$$

- note that for $a=b$ (square), side walls only contribute $1 / 4$ of the total moment of inertia: best to have more mass at larger y-value: this is what makes the integral bigger!

The final moment

- The I-beam
- we will ignore the minor contribution from the "web" connecting the two flanges

$$
I=2 \int_{-\frac{a}{2}}^{\frac{a}{2}} d x \int_{\frac{b}{2}-t}^{\frac{b}{2}} y^{2} d y=2 a\left[\frac{b^{3}}{24}-\frac{\left(\frac{b}{2}-t\right)^{3}}{3}\right] \approx \frac{a b^{2} t}{2}
$$

- note this is just the rectangular tube result without the side wall. If you want to put a web member in, it will add an extra $b^{3} t / 12$, roughly
- in terms of area $=2 a t: \quad I \approx \frac{A^{2}}{8} \frac{b}{a} \frac{b}{t}$
- The I-beam puts as much material at high y-value as it can, where it maximally contributes to the beam stiffness
- the web just serves to hold these flanges apart

Lessons on moments

- Thickness in the direction of bending helps to the third power
- always orient a 2×4 with the " 4 " side in the bending direction
- For their weight/area, tubes do better by putting material at high y-values
- I-beams maximize the moment for the same reason
- For square geometries, equal material area, and a thickness $1 / 20$ of width (where appropriate), we get:
- square solid: $I \approx A^{2} / 12 \approx 0.083 A^{2}$
- circular solid: $1 \approx A^{2} / 4 \pi \approx 0.080 A^{2}$
- square tube: $I \approx 20 A^{2} / 24 \approx 0.83 A^{2}$
- circular tube: $I \approx 10 A^{2} / 4 \pi \approx 0.80 A^{2}$
- I-beam: $I \approx 20 A^{2} / 8 \approx 2.5 A^{2}$
- I-beam wins hands-down

Beyond Elasticity

- Materials remain elastic for a while
- returning to exact previous shape
- But ultimately plastic (permanent) deformation sets in
- and without a great deal of extra effort

Breaking Stuff

- Once out of the elastic region, permanent damage results
- thus one wants to stay below the yield stress
- yield strain = yield stress / elastic modulus

Material	Yield Stress (MPa)	Yield Strain
Tungsten*	1400	0.004
Steel	$280-1600$	$0.0015-0.0075$
Brass, Bronze, Copper	$60-500$	$0.0005-0.0045$
Aluminum	$270-500$	$0.004-0.007$
Glass*	70	0.001
Wood	$30-60$	$0.0025-0.005$
most plastics* 2	$40-80$	$0.01-0.04$

* ultimate stress quoted (see next slide for reason)

Notes on Yield Stress

- The entries in red in the previous table represent ultimate stress rather than yield stress
- these are materials that are brittle, experiencing no plastic deformation, or plastics, which do not have a well-defined elastic-to-plastic transition
- There is much variability depending on alloys
- the yield stress for steels are
- stainless: 280-700
- machine: 340-700
- high strength: 340-1000
- tool: 520
- spring: 400-1600 (want these to be elastic as long as possible)
- aluminum alloys
- 6061-T6: 270 (most commonly used in machine shops)
- 7075-T6: 480

Shear Stress

- $\tau=G \gamma$
$-\tau$ is the shear stress $\left(N \cdot \mathrm{~m}^{-2}\right)=$ force over area $=F / d A$
- $d A$ is now the shear plane (see diagram)
$-G$ is the shear modulus ($\mathrm{N} \cdot \mathrm{m}^{-2}$)
$-\gamma$ is the angular deflection (radians)
- The shear modulus is related to E, the elastic modulus
$-E / G=2(1+v)$
$-v$ is called Poisson's ratio, and is typically around $0.27-0.33$

Practical applications of stress/strain

- Infrared spectrograph bending (flexure)
- dewar whose inner shield is an aluminum tube 1/8 inch (3.2 mm) thick, 5 inch (127 mm) radius, and 1.5 m long
- weight is 100 Newtons
- loaded with optics throughout, so assume (extra) weight is 20 kg $\rightarrow 200$ Newtons
- If gravity loads sideways (when telescope is near horizon), what is maximum deflection, and what is maximum angle?
- calculate $I \approx\left(A^{2} / 4 \pi\right)(R / t)=2 \times 10^{-5} \mathrm{~m}^{4}$
$-E=70 \times 10^{9}$
$-Y_{\max }=m g L^{3} / 8 E I=90 \mu \mathrm{~m}$ deflection
$-Y_{\text {max }}^{\prime}=m g L^{2} / 6 E I=80 \mu \mathrm{R}$ angle
- Now the effect of these can be assessed in connection with the optical performance

Applications, continued

- A stainless steel flexure to permit parallel displacement

- each flexing member has length $L=13 \mathrm{~mm}$, width $a=25 \mathrm{~mm}$, and bending thickness $b=2.5 \mathrm{~mm}$, separated by $d=150 \mathrm{~mm}$
- how much range of motion do we have?
- stress greatest on skin (max tension/compression)
- Max strain is $\varepsilon=\sigma_{\mathrm{y}} / E=280 \mathrm{MPa} / 200 \mathrm{GPa}=0.0014$
- strain is y / R, so $b / 2 R=0.0014 \rightarrow R=b / 0.0028=0.9 \mathrm{~m}$
- $\theta=L / R=0.013 / 0.9=0.014$ radians (about a degree)
- so max displacement is about $d \cdot \theta=2.1 \mathrm{~mm}$
- energy in bent member is $E I L / R^{2}=0.1 \mathrm{~J}$ per member $\rightarrow 0.2 \mathrm{~J}$ total
$-W=F \cdot d \rightarrow F=(0.2 \mathrm{~J}) /(0.002 \mathrm{~m})=100 \mathrm{~N}(\sim 20 \mathrm{lb})$

Flexure Design

- Sometimes you need a design capable of flexing a certain amount without breaking, but want the thing to be as stiff as possible under this deflection
- strategy:
- work out deflection formula;
- decide where maximum stress is (where moment, and therefore curvature, is greatest);
- work out formula for maximum stress;
- combine to get stress as function of displacement
- invert to get geometry of beam as function of tolerable stress
- example: end-loaded cantilever

$$
\begin{aligned}
Y_{\max }=\frac{F L^{3}}{3 E I} & \begin{array}{l}
\Delta \mathrm{y} \text { is displacement from } \\
\text { centerline (half-thickness) }
\end{array} \\
M(z)=F(z-L) \rightarrow \max \text { at } z=0 &
\end{aligned}
$$

\max strain, $\varepsilon=\frac{\Delta y}{R}=\frac{\Delta y M_{\max }}{E I}=\frac{F L \Delta y}{E I} \rightarrow \max$ stress, $\sigma_{\max }=E \varepsilon=\frac{F L \Delta y}{I}$

Flexure Design, cont.

- Note that the ratio F / I appears in both the $Y_{\max }$ and $\sigma_{\max }$ formulae (can therefore eliminate)

$$
\sigma_{\max }=\frac{F}{I} L \Delta y=\frac{3 E Y_{\max }}{L^{3}} L \Delta y=\frac{3 E Y_{\max } \Delta y}{L^{2}}=\frac{3 E Y_{\max } h}{2 L^{2}}
$$

- If I can tolerate some fraction of the yield stress

$$
\sigma_{\max }=\sigma_{y} / \Phi, \text { where } \Phi \text { is the safety factor (often chosen to be } 2 \text {) }
$$

$$
h=\frac{\sigma_{\max }}{E} \frac{2 L^{2}}{3 Y_{\max }}=\frac{\sigma_{\mathrm{y}}}{\Phi E} \frac{2 L^{2}}{3 Y_{\max }}=\varepsilon_{\max } \frac{2 L^{2}}{3 Y_{\max }}
$$

- so now we have the necessary (maximum) beam thickness that can tolerate a displacement $Y_{\max }$ without exceeding the safety factor, Φ
- You will need to go through a similar procedure to work out the thickness of a flexure that follows the S-bend type (prevalent in the Lab 2)

Notes on Bent Member Flexure Design

- When the flex members have moments at both ends, they curve into more-or-less an arc of constant radius, accomplishing angle θ
- $R=E I / M$, and $\theta=L / R=M L / E I$, where L is the length of the flexing beam (not the whole assembly)
- $\sigma_{\max }=E \varepsilon_{\max }=E \Delta y / R=h \theta E / 2 L$, so $h=\left(\sigma_{y} / \Phi E\right) \times(2 L / \theta)$
- where $h=2 \Delta y$ and $R=L / \theta$

Kinematic Design

- Physicists care where things are
- position and orientation of optics, detectors, etc. can really matter
- Much of the effort in the machine shop boils down to holding things where they need to be
- and often allowing controlled adjustment around the nominal position
- Any rigid object has 6 degrees of freedom
- three translational motions in 3-D space
- three "Euler" angles of rotation
- take the earth: need to know two coordinates in sky to which polar axis points, plus one rotation angle (time dependent) around this axis to nail its orientation
- Kinematic design seeks to provide minimal/critical constraint

Basic Principles

- A three-legged stool will never rock
- as opposed to 4-legged
- each leg removes one degree of freedom, leaving 3
- can move in two dimensions on planar floor, and can rotate about vertical axis
- A pin \& hole constrain two translational degrees of freedom
- A second pin constrains rotation
- though best if it's a diamond-shaped-pin, so that the device is not over-constrained

Diamond Pin Idea

diamond pin must be ground on grinder from dowel pin: cannot buy

Kinematic Summary

- Combining these techniques, a part that must be located precisely will:
- sit on three legs or pads
- be constrained within the plane by a dowel pin and a diamond pin
- Reflective optics will often sit on three pads
- when making the baseplate, can leave three bumps in appropriate places
- only have to be 0.010 high or so
- use delrin-tipped (plastic) spring plungers to gently push mirror against pads

References and Assignment

- For more on mechanics:
- Mechanics of Materials, by Gere and Timoshenko
- For a boatload of stress/strain/deflection examples worked out:
- Roark's Formulas for Stress and Strain
- Suggested reading from reference text:
- Section 1.5; 1.5.1 \& 1.5.5; 1.6, 1.6.1, 1.6.5, 1.6.6 (3 ${ }^{\text {rd }}$ ed.)
- Section 1.2.3; 1.6.1; 1.7 (1.7.1, 1.7.5, 1.7.6) (4 ${ }^{\text {th }}$ ed.)
- Additional reading on Phys239 website
- https://tmurphy.physics.ucsd.edu/phys239/lectures/phys239_2016_lec12.pdf
- very similar development to this lecture, with more text

