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Abstract The technique of lunar laser ranging (LLR) has for many decades contributed to
cutting-edge tests of the fundamental nature of gravity. These include the best tests to date
of the strong equivalence principle, the time-rate-of-change of the gravitational constant,
gravitomagnetism, the inverse square law, and preferred frame effects. The phenomenolo-
gies of each are briefly discussed, followed by an extended discussion of gravitomagnetism.
Finally, the new APOLLO project is summarized, which achieves range precision as low as
one millimeter.
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1 Introduction

Lunar laser ranging (LLR) is a technique in which short pulses of laser light are sent from the
earth to the moon, reflecting off of arrays of corner cube prisms placed on the moon’s surface
by astronauts or unmanned missions (Bender et al. 1973; Dickey et al. 1994). The round-trip
time is accurately measured, from which the earth-moon distance may be deduced. Com-
parison to a sophisticated model containing not only gravitational dynamics of the solar
system, but also body torque effects, earth tides, surface loading effects, atmospheric prop-
agation delay, etc. allows one to test whether general relativity can adequately describe the
lunar orbit, and parameterize any necessary correction.

Because the “Nature of Gravity” conference focused much attention on the gravitomag-
netic phenomenon, this paper is largely devoted to that topic, with comparatively little treat-
ment of LLR science in general or the APOLLO project. External references provide ample
coverage of these topics.
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2 LLR Science

A continuous record of laser range measurements between Earth and Moon dating back to
1969 have provided an unprecedented set of data by which to understand dynamics within
the solar system and test the fundamental nature of gravity. A model containing all antic-
ipated physical processes impacting the measurement is constructed to simulate the mea-
surements (see Williams et al. 1996 and references within). Differences are minimized by
parameter adjustment, many of which represent initial conditions for the numerical inte-
gration of solar system bodies. Because each planet and each effect has a unique signature
in frequency space—via harmonic distortions on the lunar orbit—a long time span of data
allows one to separate effects and isolate influences. Part of the model describes gravity,
which is generally formulated in a parameterized post-Newtonian (PPN) framework, de-
scribed in Will and Nordtvedt (1972). Fits may be configured to test specific violations of
general relativity by freezing or releasing various parameters in any combination. Thus far,
no departures from Einstein’s prescription for gravity have been identified. Such tests in-
clude:

– Weak Equivalence principle to �a/a ≈ 1.3 × 10−13 (Williams et al. 2004)
– Strong Equivalence Principle to η < 4.5 × 10−4 (Williams et al. 2004)
– Evolution of the gravitational constant to Ġ/G < 9 × 10−13 (Williams et al. 2004)
– Gravitomagnetism to ≈ 0.1% (Murphy et al. 2007; Soffel et al. 2008)
– Geodetic precession to < 0.6% (Williams et al. 2004)
– Inverse square law good to < 10−10 times strength of gravity at ∼ 108 m scales.

The phenomenologies related to each of the above measurements vary. For instance, the
equivalence principle violations (weak or strong) manifest as a displacement, or polarization
of the lunar orbit, showing up as a cosD perturbation, where D is the lunar phase angle with
respect to the Earth–Sun line (Nordtvedt 1968). A change in G looks like an anomalous
evolution of the phase of the large (2 × 107 m) elliptical signature of the lunar orbit, in
which case the phase anomaly evolves quadratically for a constant Ġ. Gravitomagnetism
imposes both cosD and cos 2D perturbations on the orbit (further discussion below). An
anomalous precession rate could be interpreted multiple ways, and so is less clear than
other perturbations at singling out a specific failure in the theory. For instance, anomalous
precession could point to a failure in geodetic precession (predicted at 19.2 mas yr−1) or as a
“fifth force” modifying the inverse square law—potentially connected to brane-world ideas
of Dvali et al. (2003) and Lue and Starkman (2003). LLR can also provide tests of preferred
frames (Müller et al. 1996; Nordtvedt 1987) and of Newton’s third law (Nordtvedt 2001).

In general, the lunar orbit provides probes to a wide variety of gravitational phenomena,
with a rich set of (mostly) unique “fingerprints” by which to distinguish among them. We
now turn attention to the topic of gravitomagnetism, and the role it plays in LLR.

3 Gravitomagnetism

3.1 Introduction to Gravitomagnetism

A covariant theory of gravity must allow the transformation from one coordinate frame
to another while maintaining the ability to describe the same phenomenology in a consis-
tent manner. Such transformations in general produce non-zero space-time components in
the metric (g0i �= 0), introducing frame-dependent terms in the equations of motion. Such



Lunar Ranging, Gravitomagnetism, and APOLLO 219

effects are termed gravitomagnetic, in analogy to the magnetic field, which plays a simi-
lar role in producing a covariant framework for electromagnetism. Schutz (2003) gives a
well-constructed phenomenological derivation of the need for gravitomagnetism in order to
satisfy frame independence, for a system of two oppositely directed linear mass currents.
Gravitomagnetic phenomena are not readily apparent in human experience due to a v2/c2

suppression factor, amounting to ∼ 10−8 times the gravito-electric (Newtonian) influence
in the case of earth’s orbit about the sun. Precision measurements within the solar system,
however, are sensitive to such small effects.

For a point mass, or for a mass element within a system of masses, one may always
transform into the frame of the mass and eliminate the gravitomagnetic field generated by
that mass—much as one may move along with an electric charge to “kill” any magnetic
field, leaving only the electric field. As soon as two masses are in motion with two different
velocities, it is impossible to find a non-rotating frame in which the gravitomagnetic field
is zero. Such is the case for rotating bodies, where the mass currents of the individual mass
elements combine to produce a net gravitomagnetic field that cannot be transformed away
by rectilinear boosts—though it could be eliminated in a frame rotating with the object,
incurring many practical difficulties in formulating the external universe in such a frame.

3.2 Familiar Examples

Well-known examples of gravitomagnetic phenomenology are the Lense-Thirring preces-
sion and the Schiff precession, both involving rotating massive bodies. In the first case, the
inclined orbital plane of a satellite moving around the rotating mass will be seen to rotate
with respect to the fixed stars. In the latter case, a gyroscope will precess due to the massive
body’s rotation, the direction and magnitude depending on the latitude of the gyroscope rel-
ative to the rotation axis. Both phenomena are commonly called “frame-dragging,” and are
effects sought by the LAGEOS and the Gravity Probe-B experiments, with some success
(these may ultimately achieve ∼5% and ∼10%-level confirmation, respectively).

It is tempting to refer to these phenomena as spin-orbit and spin-spin coupling, respec-
tively, in analogy with quantum mechanics. But this is potentially misleading, since mas-
sive bodies do not possess intrinsic gravitational “spin,” but rather simply have a net an-
gular momentum due to the superposition of many mass elements in instantaneous recti-
linear motion, each contributing infinitesimally and coherently to the total angular momen-
tum. We will now look at the gravitomagnetic influence from individual masses, which—
when superimposed—constitute the familiar composite gravitomagnetic field from a rotat-
ing body.

3.3 Generalized Gravitomagnetism and Application to the Moon’s Orbit

The Earth–Moon system also exhibits a gravitomagnetic dependence, in a form that one
might be tempted to call orbit–orbit coupling in the misleading jargon of the previous para-
graph. In this case, the earth moving around the sun produces gravitomagnetic field (when
assessed in the solar system barycenter frame—or any frame not moving with the earth, for
that matter). It is important to note that this gravitomagnetic field does not arise from rota-
tion, but rather from rectilinear motion. The moon moves through this field, experiencing
a Lorentz-like force perpendicular to both its velocity and the gravitomagnetic field. The
gravitomagnetic acceleration is given by:

aGM = 2(1 + γ + α1/4)

c2
vm × ve × gme, (1)
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where subscripts e and m denote earth and moon, v is a velocity vector, and g is the familiar
gravito-electric acceleration vector acting on the moon from the earth. The pre-factor evalu-
ates to 4 in general relativity, with PPN parameters γ = 1, and α1 = 0. The gravitomagnetic
field is then B = 4(ve × gme)/c

2, so that the Lorentz acceleration has the familiar v × B
form. In Murphy et al. (2007), it is shown that this term in the equations of motion, when
integrated over individual mass elements in rotating bodies and applied to the geometry of a
gyroscope in a polar orbit around the earth, reproduces exactly the 42 mas yr−1 precession
rate sought by GP-B. It also produces ∼ 6 m amplitude terms in the moon’s orbit as evalu-
ated in the solar system barycenter (SSB) frame, in both cosD and cos 2D functions, where
D is the phase angle of the moon (D = 0 is new moon, D = 180◦ is full moon). Having de-
termined these amplitudes in fitting LLR data to sub-centimeter accuracy, we may conclude
that gravitomagnetism has been checked in the solar system to ∼0.1% precision using LLR.

3.4 More than a Coordinate Effect?

A natural objection to this statement, as articulated by Kopeikin (2007), is that the grav-
itomagnetic phenomenology in the lunar orbit is dependent on the frame of evaluation—
evaluating in a geocentric frame would null the rectilinear gravitomagnetic influence of earth
on the moon. The implication is that, in transforming to the SSB frame, one inserts phenom-
enological corrections that are trivially recovered in the fit to the data. Such a procedure
would indeed be vacuous, and would do nothing to corroborate the existence of gravitomag-
netism. But aside from the practical difficulties of formulating solar system dynamics in a
geocentric frame, we must understand whether the choice to execute a coordinate transfor-
mation indeed renders the gravitomagnetic sensitivity of LLR meaningless. Note that if the
LAGEOS or GP-B were evaluated in a frame rotating with the earth, the “frame dragging”
from the rotating earth would disappear, replaced by a host of rotating frame “effects.” But
does such a coordinate system choice also deprive these precession phenomena of value,
if measured? To illuminate this issue, we must detail the manner in which the lunar range
model is formulated. In doing so, we will expose the notion that the gravitomagnetic phe-
nomenon is intimately connected with time transformation.

3.5 Inside LLR Analysis

Consider the fundamental measurement constituted by lunar ranging. A clock on earth,
measuring proper time at some defined gravitational potential, is used to timestamp both
outgoing pulses and incoming pulses from the moon. The time at the moon bounce is never
measured—nor is an actual distance measured. Two times constitute the measurement, each
with an absolute uncertainty of about 10−8 s (0.3 mm at Earth’s velocity of 30 km s−1), and
a differential uncertainty of about 10−11 s (3 mm at the speed of light). Thus each “range”
measurement fundamentally consists of two time measurements on the clock. To transform
to the SSB frame, the earth-clock proper times, τ , are converted to SSB frame coordinate
times, t , according to the prescription formulated by Moyer (1981). In its most basic form:

dt ≈
(

1 − �φ + 1

2
ṡ2

)
dτ, (2)

where �φ represents the potential difference between the two locations, and ṡ represents the
velocity of the clock with respect to the SSB frame. Thus the complete time transformation
amounts to gravitational redshift and time dilation corrections. The velocity of the earth in
the SSB frame is modulated at the cosD frequency due to its orbit around the Earth–Moon
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barycenter. But this amounts to only 12 m s−1, imposing only a 1.5 mm cosD modulation
on top of the roughly constant 1.9 m ṡ2 correction, modulated annually by ∼ 60 mm due
to earth’s eccentric orbit. Following the time transformation, a light propagation correction
is applied to account for the fact that the propagation path transits a varying gravitational
potential. Called the Shapiro delay, it is computed by the formula:

�t = (1 + γ )GMs

c3
ln

(
Re + Rm + Rem

Re + Rm − Rem

)
, (3)

where the Rx values are the radial coordinates of the bodies from the sun, and Rem is the
Earth–Moon distance. This term amounts to a nearly constant 25 ns (7.5 m) correction,
modulated by only ∼ 10 mm at the cosD frequency (29.53 d), ∼ 0.8 m at the anomalistic
month frequency (27.55 d), and ∼ 0.25 m at an annual frequency. Finally, the earth body
figure is Lorentz contracted (31 mm effect) along its velocity vector. To summarize these
steps:

1. Obtain launch and return times on a clock at the surface of the Earth;
2. Transform these times to the SSB frame according to the potential energy and velocity

of the clock;
3. Compute the Shapiro propagation correction for consideration in the fit;
4. Lorentz contract the earth by a few centimeters;
5. Attempt to fit the observations with a physical model resting on the relativistic equations

of motion.

For the last step, with the SSB-corrected times and propagation-correction in hand, one
asks the question: are there any world lines for the solar system bodies (Earth and Moon
foremost) following the dynamics set out by the equations of motion that allow the time
measurements to be consistent with the model? In other words, can a fit be performed that is
consistent with general relativity, or PPN modifications thereof? Note that orbits are never
constructed in one frame and transformed into another frame: orbits are only constructed
once, during the world-line fit to the transformed time coordinates.

As mentioned before, the gravitomagnetic term in the equations of motion produces
∼ 6 m amplitude effects at cosD and cos 2D. The transformation steps detailed above do
not insert these phenomenological signatures directly, so the claim that the LLR sensitivity
to gravitomagnetism is trivially constructed is not borne out by this analysis.

3.6 Experimental Conflict Scenario

The crux of the mater is: if some other experiment claimed a departure of gravitomagnetism
from general relativity at, say, the 1% level, we would be left asking the question: what part
of the LLR analysis did we not understand? And fundamentally, it comes down to basic
time transformation. This is another way to understand the statement that gravitomagnetism
is fundamentally tied to transformations. Gravitomagnetism is the piece that lets gravity
be put on a covariant footing, via coordinate transformations. While arbitrarily complex
mass currents may mask this fact due to emergent (e.g., “spin”) phenomenology, the only
reason that gravitomagnetism exists at all is to permit frame transformation (see Schutz
2003). Some have tried to split gravitomagnetism into “intrinsic” and “gauge” forms, but
there is no physical basis for this distinction. We do not do the same for magnetic fields
in electromagnetism, despite identical frame-dependence features. Similarly, we do not say
that the Coriolis “force” is fundamentally different when manifested in a swirling, draining
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tub (spin system) than when seen in the deflection of a projectile (orbit system), despite
seemingly disparate phenomenologies.

Perhaps a fair way to put it is: the mere fact that we can successfully fit the lunar orbit in
the SSB frame is striking confirmation that gravitomagnetism plays its expected role. One
may wish to call the LLR connection to gravitomagnetism “gauge-dependent,” and this is
fair enough. But such is gravitomagnetism as a whole. The fact that a frame exists in which
the gravitomagnetic field from the moving earth is zero does not diminish the physical reality
of that field in shaping orbits in the SSB frame.

If another experiment were to claim a 1% violation of gravitomagnetic phenomenology,
the LLR result must be confronted. How can we modify the strength of this term—this
physics—to suit one experiment without irreparably damaging the LLR fit? One might in-
vestigate which other terms in the equations of motion might also be modified to cover the
sins of the delinquent gravitomagnetic term. But each term brings its own unique phenom-
enological signature. In the case of gravitomagnetism, it is −6.1 m in cosD and −6.5 m in
cos 2D. Other terms will not be able to mask this without unraveling some other periodic
signatures. Soffel et al. (2008) recently explored these possibilities with a full model fit to
LLR data, and found that indeed one has no freedom to change the scaling of the gravito-
magnetic term in an ad-hoc (the most versatile) way by more than 0.15% without destroying
the fit to LLR data—even when other terms were permitted to take up the slack.

But modifying the gravitomagnetic strength in isolation—or arbitrarily in relation to the
strengths of other terms—in this ad-hoc way lacks physical justification. A more meaningful
test is to stay within the framework of the PPN formalism, which amounts to changing γ

or α1 to influence the strength of the term in (1). In this case, other terms in the equations
of motion change in a way that preserves covariance automatically, with the caveat that α1

does describe a preferred frame in space. Here, Soffel et al. (2008) found that LLR provides
a similarly restrictive limit on alteration of the gravitomagnetic term, at the 0.2% level.

3.7 Summary Statement

The point from this discussion is that the LLR sensitivity to gravitomagnetism represents a
real limit in physics. It cannot be dismissed as merely an artifact of frame transformation:
a “signal” injected and recovered. There are no cosD or cos 2D terms inserted in the trans-
formations of (2) or (3) at the six meter level (few millimeter level, yes). In fact, one can say
that gravitomagnetism is intimately connected to transformation properties. Like the mag-
netic field in electromagnetism, it serves to provide a covariant basis for gravity. We know
we can transform magnetic fields away with boosts, but this does not lead us to conclude
that such magnetic fields are any less “real” when measured by a compass needle. Likewise,
the gravitomagnetic influence on the lunar orbit is real and physical in the SSB. The fact
that the LLR clock acts consistently with gravitomagnetism while moving through the SSB
frame only serves to highlight the fundamental connection: gravitomagnetism is by its very
nature a frame-dependent piece of physics. Interesting arrangements of mass currents do not
change that simple fact.

4 APOLLO

For the last decade or more, LLR data quality has settled to the impressive level of ∼ 2 cm
range uncertainty. Though the range capability has been roughly constant over this time, the
science gains represented in Sect. 2 have seen steady improvement over the years as more
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data accumulates. Because LLR has provided such an extensive array of cutting-edge tests
of gravity, it is worth pushing the technique further in order to achieve the best tests possible
of the fundamental nature of gravity.

The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO: Murphy et
al. 2008) was established in pursuit of this goal. By implementing LLR on a large (3.5 m)
astronomical telescope with modern technology, it is possible to greatly exceed the photon
rate experienced by other LLR stations, translating to reduced random uncertainty via sheer
statistics. APOLLO routinely achieves random uncertainties in the 1–2 mm range (Bat-
tat et al. 2009), and has seen record photon yields surpassing previous records by almost
two orders-of-magnitude. It will take more time and effort to establish whether APOLLO
has systematic errors under control at the millimeter level, but so far nothing obvious has
emerged. Few-millimeter precision LLR measurements will permit order-of-magnitude im-
provements in the various tests of the fundamental nature of gravity detailed in Sect. 2. For
more information on the details of APOLLO’s construction and performance, please consult
the references in this paragraph and information online (Murphy 2009). APOLLO’s normal
points are made public via this website.

Acknowledgements I thank Ken Nordtvedt, Sergei Kopeikin, Eric Michelsen, Jürgen Müller, Slava Tury-
shev, and Cliff Will for meaningful interactions that have contributed to the articulation of gravitomagnetism
herein. I also acknowledge the APOLLO collaboration for their substantial role in establishing the APOLLO
experiment, and Jim Williams and Dale Boggs for providing model fits to APOLLO data and associated
feedback. APOLLO is funded by the National Science Foundation and by NASA.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

J.B.R. Battat, T.W. Murphy, E.G. Adelberger, B. Gillespie, C.D. Hoyle, R.L. McMillan, E.L. Michelsen, K.
Nordtvedt, A.E. Orin, C.W. Stubbs, H.E. Swanson, Publ. Astron. Soc. Pac. 121, 29 (2009)

P.L. Bender, D.G. Currie, R.H. Dicke, D.H. Eckhardt, J.E. Faller, W.M. Kaula, J.D. Mullholland, H.H.
Plotkin, S.K. Poultney, E.C. Silverberg, D.T. Wilkinson, J.G. Williams, C.O. Alley, Science 182, 229
(1973)

J.O. Dickey, P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shelus, C. Veillet, A.L.
Whipple, J.R. Wiant, J.G. Williams, C.F. Yoder, Science 265, 482 (1994)

G. Dvali, A. Gruzinov, M. Zaldarriaga, Phys. Rev. D 68, 024012 (2003)
A. Lue, G. Starkman, Phys. Rev. D 67, 064002 (2003)
S.M. Kopeikin, Phys. Rev. Lett. 98, 229001 (2007)
T.D. Moyer, Celest. Mech. 23, 33 (1981)
J. Müller, K. Nordtvedt, D. Vokrouhlicky, Phys. Rev. D 54, R5927 (1996)
T. Murphy, APOLLO Website, http://www.physics.ucsd.edu/~tmurphy/apollo. Accessed 19 January 2009
T.W. Murphy Jr., K. Nordtvedt, S.G. Turyshev, Phys. Rev. Lett. 98, 071102 (2007)
T.W. Murphy, E.G. Adelberger, J.B.R. Battat, L.N. Carey, C.D. Hoyle, P. Leblanc, E.L. Michelsen, K.

Nordtvedt, A.E. Orin, J.D. Strasburg, C.W. Stubbs, H.E. Swanson, E. Williams, Publ. Astron. Soc. Pac.
120, 20 (2008)

K. Nordtvedt, Phys. Rev. 169, 1014 (1968)
K. Nordtvedt, Astrophys. J. 320, 871 (1987)
K. Nordtvedt, Class. Quant. Grav. 18, L133 (2001)
B. Schutz, Gravity from the Ground Up (Cambridge University Press, Cambridge, 2003), pp. 245–253
M. Soffel, S. Klioner, J. Müller, L. Biskupek, Phys. Rev. D 78, 024033 (2008)
C.M. Will, K. Nordtvedt, Astrophys. J. 177, 757 (1972)
J.G. Williams, X.X. Newhall, J.O. Dickey, Phys. Rev. D 53, 6730 (1996)
J.G. Williams, S.G. Turyshev, D.H. Boggs, Phys. Rev. Lett. 93, 261101 (2004)

http://www.physics.ucsd.edu/~tmurphy/apollo

	Lunar Ranging, Gravitomagnetism, and APOLLO
	Introduction
	LLR Science
	Gravitomagnetism
	Introduction to Gravitomagnetism
	Familiar Examples
	Generalized Gravitomagnetism and Application to the Moon's Orbit
	More than a Coordinate Effect?
	Inside LLR Analysis
	Experimental Conflict Scenario
	Summary Statement

	APOLLO
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


